Welcome to the website of the Data Science for Crop Systems Group. Our research aims at the development of machine learning methods, which are particularly designed for the analysis of remote sensing data. We specifically focus on techniques for sophisticated feature learning and data analysis methods that integrate prior knowledge, such as scientific domain knowledge. We believe it is important to develop methods that ensure a high discrimination power and simultaneously model the underlying structure of the data. A particular research direction is explainable machine learning approaches which are able to tackle common challenges in the sciences such as the provision of reliable and scientific consistent results. These models give us a deeper understanding of what we have learned and can provide us with new scientific insights.

Open Positions
See also our propositions for Bachelor and Master theses!

News



2023-06: Our paper ,,Reliability Scores from Saliency Map Clusters for Improved Image-based Harvest-Readiness Prediction in Cauliflower” was accepted in IEEE Geoscience and Remote Sensing Letters and finally published.

2023-06: Jana presents her work at this years summer doctoral seminar of our Institute of Geodesy and Geoinformation


2023-05: Our Ph.D. students attend this year’s PhenoRob Career Fair.

2023-04: Eike attends the EGU General Assembly 2023 in Vienna.

2023-04: MapInWild article has been published.

2023-02: Lukas presents his work at the doctoral seminar of our Institute of Geodesy and Geoinformation

2023-01: Jana starts in the new project TrAgS

2022-10: Our dataset GrowliFlower is finally published and publicly available.

2022-10: Burak Ekim visits our group for 2 weeks

2022-09: Ribana and Jana attend the EIP-Agri OG-Workshop in Hannover and present our project OPTIKO


2022-07: First learn, then do sports: Lukas @ amazing Vision and Sports Summer School in Prague.

2022-07: Eike presents the paper ,,Occlusion Sensitivity Analysis of Neural Network Architectures for Eddy Detection” remotely at IGARSS 2022

2022-06: The whole group is attending and presenting at the ISPRS Congress in Nice

2022-05: Eike presents our current work on machine learning-based identification and classification of ocean eddies at the Living Planet Symposium 2022 as well as remotely at the EGU General Assembly 2022

2022-04: The preprint of our paper ,,GrowliFlower: An image time-series dataset for GROWth analysis of cauLIFLOWER” is out now

Projects

