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ABSTRACT Machine learning methods have been remarkably successful for a wide range of application

areas in the extraction of essential information from data. An exciting and relatively recent development is the

uptake of machine learning in the natural sciences, where the major goal is to obtain novel scientific insights

and discoveries from observational or simulated data. A prerequisite for obtaining a scientific outcome is

domain knowledge, which is needed to gain explainability, but also to enhance scientific consistency. In

this article, we review explainable machine learning in view of applications in the natural sciences and

discuss three core elements that we identified as relevant in this context: transparency, interpretability,

and explainability. With respect to these core elements, we provide a survey of recent scientific works that

incorporate machine learning and the way that explainable machine learning is used in combination with

domain knowledge from the application areas.

INDEX TERMS Explainable machine learning, informed machine learning, interpretability, scientific

consistency, transparency.

I. INTRODUCTION

Machine learning methods, especially with the rise of neural

networks (NNs), are nowadays used widely in commercial

applications. This success has led to a considerable uptake

of machine learning (ML) in many scientific areas. Usually

these models are trained with regard to high accuracy, but

there is a recent and ongoing high demand for understanding

the way a specific model operates and the underlying reasons

for the decisions made by the model. One motivation behind

this is that scientists increasingly adopt ML for optimizing

and producing scientific outcomes. Here, explainability is a

prerequisite to ensure the scientific value of the outcome. In

this context, research directions such as explainable artificial

intelligence (AI) [1], informed ML [2], or intelligible intelli-

gence [3] have emerged. Though related, the concepts, goals,

and motivations vary, and core technical terms are defined in

different ways.

The associate editor coordinating the review of this manuscript and

approving it for publication was Massimo Cafaro .

In the natural sciences, the main goals for utilizing

ML are scientific understanding, inferring causal relation-

ships from observational data, or even achieving new sci-

entific insights. With ML approaches, one can nowadays

(semi-)automatically process and analyze large amounts

of scientific data from experiments, observations, or other

sources. The specific aim and scientific outcome represen-

tation will depend on the researchers’ intentions, purposes,

objectives, contextual standards of accuracy, and intended

audiences. Regarding conditions for an adequate scientific

representation, we defer to the philosophy of science [4].

This article provides a survey of recentML approaches that

are meant to derive scientific outcomes, where we specif-

ically focus on the natural sciences. Given the scientific

outcomes, novel insights can be derived to deepen under-

standing, or scientific discoveries can be revealed that were

not known before.Gaining scientific insights and discoveries

from an ML algorithm means gathering information from its

output and/or its parameters regarding the scientific process

or experiments underlying the data.
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FIGURE 1. Major ML-based chains from which scientific outcomes can be derived: The commonly used, basic ML chain (light gray box)
learns a black box model from given input data and provides an output. Given the black box model and input-output relations, a scientific
outcome can be derived by explaining the output results utilizing domain knowledge. Alternatively, a transparent and interpretable model
can be explained using domain knowledge leading to scientific outcomes. Additionally, the incorporation of domain knowledge can
promote scientifically consistent solutions (green arrows).

One should note that a data-driven effort of scientific dis-

covery is nothing new, but mimics the revolutionary work of

Johannes Kepler and Sir Isaac Newton, which was based on

a combination of data-driven and analytical work. As stated

by [5],

Data science is not replacing mathematical physics

and engineering, but is instead augmenting it for

the twenty-first century, resulting in more of a

renaissance than a revolution.

What is new, however, is the abundance of high-quality data

in the combination with scalable computational and data

processing infrastructure.

The main contribution of this survey is the discussion

of commonly used ML-based chains leading to scientific

outcomes that have been used in the natural sciences (see

Fig. 1). The three elements transparency, interpretability,

and explainability play a central role. These concepts will be

defined and discussed in detail in this survey. Another essen-

tial component is domain knowledge, which is necessary to

achieve explainability, but can also be used to foster scientific

consistency of the model and the result. We provide diverse

examples from the natural sciences of approaches that can be

related to these topics. Moreover, we define several groups of

ML chains based on the presence of the components from

Fig. 1. Our goal is to foster a better understanding and a

clearer overview of ML algorithms applied to data from the

natural sciences.

The paper is structured as follows. Section II dis-

cusses transparency, interpretability, and explainability in

the context of this article. While these terms are more

methodology-driven and refer to properties of the model

and the algorithm, we also describe the role of additional

information and domain knowledge, as well as scientific

consistency. Section III highlights several applications in the

natural sciences that use these concepts to gain new scientific

insights, while organizing the ML workflows into character-

istic groups based on the different uptakes of interpretabil-

ity and explainability. Section IV closes the paper with a

discussion.

II. TERMINOLOGY

Several descriptive terms are used in the literature about

explainable ML with diverse meanings, e.g., [6]–[11].

Nonetheless, distinct ideas can be identified. For the pur-

pose of this work, we distinguish between transparency,

interpretability, and explainability. Roughly speaking, trans-

parency considers the ML approach, interpretability con-

siders the ML model together with data, and explainability

considers the model, the data, and human involvement.

A. TRANSPARENCY

An ML approach is transparent if the processes that extract

model parameters from training data and generate labels from

testing data can be described and motivated by the approach

designer. We say that the transparency of an ML approach

concerns its different ingredients: the overall model structure,

the individual model components, the learning algorithm,

and how the specific solution is obtained by the algorithm.

We propose to distinguish between model transparency,

design transparency, and algorithmic transparency. Gener-

ally, to expect an ML method to be completely transparent in

all aspects is rather unrealistic; usually there will be different

degrees of transparency.

As an example, consider kernel-based ML appro-

aches [12], [13]. The obtained model is transparent as it is

given as a sum of kernel functions. The individual design
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component is the chosen kernel. Choosing between a linear

or nonlinear kernel is typically a transparent design deci-

sion. However, using the common Gaussian kernel based on

Euclidean distances can be a non-transparent design decision.

In other words, it may not be clear why a given nonlinear

kernel was chosen. Domain specific design choices can

be made, in particular using suitable distance measures to

replace the Euclidean distance, making the design of this

model component (more) transparent. In the case of Gaussian

process (GP) regression, the specific choice of the kernel

can be built into the optimization of the hyper-parameters

using the maximum likelihood framework [13]. Thereby,

design transparency crosses over to algorithmic transparency.

Furthermore, the obtained specific solution is, from a mathe-

matical point of view, transparent. Namely, it is the unique

solution of a convex optimization problem that can be

reproducibly obtained [12], [13], resulting in algorithmic

transparency. In contrast, approximations in the specific solu-

tion method such as early stopping, matrix approximations,

stochastic gradient descent, and others, can result in (some)

non-transparency of the algorithm.

As another example, consider NNs [14]. The model is

transparent since its input-output relation and structure can

be written down in mathematical terms. Individual model

components, such as a layer of a NN, that are chosen based on

domain knowledge can be considered as design transparent.

Nonetheless, the layer parameters— be it their numbers, size,

or nonlinearities involved — are often chosen in an ad-hoc

or heuristic fashion and not motivated by domain knowl-

edge; these decisions are therefore not design transparent.

The learning algorithm is typically transparent, e.g., stochas-

tic gradient descent can be easily written down. However,

the choice of hyper-parameters such as learning rate, batch

size, etc., has a more heuristic, non-transparent algorithmic

nature. Due to the presence of several local minima, the solu-

tion is usually not easily reproducible; therefore, the obtained

specific solution is not (fully) algorithmically transparent.

Our view is closely related to Lipton [9], who writes:

Informally, transparency is the opposite of opac-

ity or ‘‘black-boxness’’. It connotes some sense of

understanding the mechanism by which the model

works. Transparency is considered here at the level

of the entire model (simulatability), at the level of

individual components such as parameters (decom-

posability), and at the level of the training algo-

rithm (algorithmic transparency).

An important contribution to the understanding of ML

algorithms is their mathematical interpretation and deriva-

tion, which help to understand when and how to use these

approaches. Classical examples are the Kalman filter or

principal component analysis, where several mathematical

derivations exist for each and enhance their understanding.

Note that although there are many mathematical attempts to

a better understanding of deep learning, at this stage ‘‘the

[mathematical] interpretation of NNs appears to mimic a type

of Rorschach test,’’ according to [15].

Overall, we argue that transparency in its three forms does

to a large degree not depend on the specific data, but solely

on theMLmethod. But clearly, the obtained specific solution,

in particular the ‘‘solution path’’ to it by the (iterative) algo-

rithm, depends on the training data. The analysis task and the

type of attributes usually play a role in achieving design trans-

parency. Moreover, the choice of hyper-parameters might

involve model structure, components, or the algorithm, while

in an algorithmic determination of hyper-parameters the spe-

cific training data comes into play again.

B. INTERPRETABILITY

For our purposes, interpretability pertains to the capabil-

ity of making sense of an obtained ML model. Generally,

to interpret means ‘‘to explain the meaning of’’ or ‘‘present

in understandable terms;’’1 see also [6]–[8]. We consider

explanation distinct from interpretation, and focus here on

the second aspect. Therefore, the aim of interpretability is

to present some of the properties of an ML model in terms

understandable to a human. Ideally, one could answer the

question from [16]: ‘‘Can we understand what the ML algo-

rithm bases its decision on?’’ Somewhat formally, [10] states:

An interpretation is the mapping of an abstract

concept (e.g., a predicted class) into a domain that

the human can make sense of.

Interpretations can be obtained by way of understandable

proxy models, which approximate the predictions of a more

complex approach [7], [8]. Longstanding approaches involve

decision trees or rule extraction [17] and linear models.

In prototype selection, one or several examples similar to

the inspected datum are selected, from which criteria for the

outcome can be obtained. For feature importance, the weights

in a linear model are employed to identify attributes that

are relevant for a prediction, either globally or locally. For

example, [18] introduced the model-agnostic approach LIME

(Local Interpretable Model-Agnostic Explanations), which

gives interpretation by creating locally a linear proxy model

in the neighborhood of a datum, while the scores in layer-wise

relevance propagation (LRP) are obtained by means of a

first-order Taylor expansion of the nonlinear function [10].

A sensitivity analysis can be used to inspect how a model

output (locally) depends upon the different input parame-

ters [19]. Such an extraction of information from the input

and the output of a learned model is also called post hoc

interpretability [9] or reverse engineering [8]. Further details,

types of interpretation, and specific realization can be found

in recent surveys [7], [8], [20].

Visual approaches such as saliency masks or heatmaps

show relevant patterns in the input based on feature impor-

tance, sensitivity analysis, or relevance scores to explain

model decisions, and are employed in particular with deep

learning approaches for image classification [10], [21], [22].

[23] introduces a formal notion for interpreting NNs where

a set of input features is deemed relevant for a classi-

1https://www.merriam-webster.com/dictionary/interpret
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fication decision if the expected classifier score remains

nearly constant when randomising the remaining features.

The authors prove that under this notion, the problem of

finding small sets of relevant features is NP-hard, even

when considering approximation within any non-trivial fac-

tor. This, on the one hand, shows the difficulty of algo-

rithmically determining interpretations; on the other hand,

it justifies the current use of heuristic methods in practical

applications.

In unsupervised learning, the analysis goal can be a better

understanding of the data, for example, by an interpretation of

the obtained representation by linear or nonlinear dimension-

ality reduction [24], [25], or by inspecting the components of

a low-rank tensor decomposition [26].

Note that, in contrast to transparency, to achieve inter-

pretability the data is always involved. Although there are

model-agnostic approaches for interpretability, transparency

or retaining the model can assist in the interpretation. Further-

more, method-specific approaches depend on transparency.

For example, layer-wise relevance propagation for NNs

exploits the known model layout [10].

While the methods for interpretation allow the inspection

of a single datum, [27] observes that it quickly becomes very

time consuming to investigate large numbers of individual

interpretations. As a step to automate the processing of the

individual interpretations for a single datum, they employ

clustering of heatmaps of many data to obtain an overall

impression of the interpretations for the predictions of theML

algorithm.

Finally, note that the interpretable and human level under-

standing of the performance of an ML approach can result

in a different choice of the ML model, algorithm, or data

pre-processing later on.

C. EXPLAINABILITY

While research into explainable ML is widely recognized as

important, a joint understanding of the concept of explain-

ability still needs to evolve. Concerning explanations, it has

also been argued that there is a gap of expectations between

ML and so-called explanation sciences such as law, cognitive

science, philosophy, and the social sciences [28].

While in philosophy and psychology explanations have

been the focus for a long time, a concise definition is not

available. For example, explanations can differ in complete-

ness or the degree of causality. We suggest to follow a model

from a recent review relating insights from the social sciences

to explanations in AI [29], which places explanatory ques-

tions into three classes: (1) what–questions, such as ‘‘What

event happened?’’; (2) how–questions, such as ‘‘How did that

event happen?’’; and (3) why–questions, such as ‘‘Why did

that event happen?’’. From the field of explainable AI we

consider a definition from [10]:

An explanation is the collection of features of the

interpretable domain, that have contributed for a

given example to produce a decision (e.g., classifi-

cation or regression).

As written in [8], ‘‘[in explainable ML] these definitions

assume implicitly that the concepts expressed in the under-

standable terms composing an explanation are self-contained

and do not need further explanations.’’

On the other hand, we believe that a collection of inter-

pretations can be an explanation only with further contex-

tual information, stemming from domain knowledge and

related to the analysis goal. In other words, explainability

usually cannot be achieved purely algorithmically. On its

own, the interpretation of a model— in understandable terms

to a human — for an individual datum might not provide

an explanation to understand the decision. For example,

the most relevant variables might be the same for several data;

however, it is possible that the important observation for an

understanding of the overall predictive behavior is that when

ranking variables with respect to their interpretation, different

lists of relevant variables are determined for each datum.

Overall, the result will depend on the underlying analysis

goal. ‘‘Why is the decision made?’’ will need a different

explanation than ‘‘Why is the decision for datum A different

to (the nearby) datum B?’’.

In other words, for explainability, the goal of the ML

‘‘user’’ is very relevant. According to [20], there are essen-

tially four reasons to seek explanations: to justify decisions,

to (enhance) control, to improve models, and to discover

new knowledge. For regulatory purposes it might be fine to

have an explanation by examples or (local) feature analysis,

so that certain ‘‘formal’’ aspects can be checked. But, to attain

scientific outcomes with ML one wants an understanding.

Here, the scientist is using the data, the transparency of the

method, and its interpretation to explain the output results (or

the data) using domain knowledge and thereby to obtain a

scientific outcome.

Furthermore, we suggest differentiating between scien-

tific explanations and algorithmic explanations. For scientific

explanations, [30] identifies five broad categories to classify

the large majority of objects that are explained in science:

data, entities, kinds, models, and theories. Furthermore, it is

observed that the existence of a unifying general account

of scientific explanation remains an open question. With an

algorithmic explanation, one aims to reveal underlying causes

to the decision of anMLmethod. This is what explainableML

aims to address. In recent years, a focus on applying interpre-

tation tools to better explain the output of an ML model can

be observed. This can be seen in contrast to symbolic AI tech-

niques, e.g., expert or planning systems, which in contrast are

often seen as explainable per se. Hybrid systems of both sym-

bolic and, so-called, connectionist AI, e.g., artificial NNs, are

investigated to combine advantages from both approaches.

For example, [31] proposes ‘‘object-oriented deep learning’’

with the goal to convert a NN to a symbolic description to

gain interpretability and explainability. They state that gen-

erally in NNs, there is inherently no explicit representation

of symbolic concepts like objects or events, but rather a

feature-oriented representation, which is difficult to explain.

In their representation, objects could be formulated to have
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disentangled and interpretable properties. Although not com-

monly used so far, their work is one example of a promising

direction towards a higher explainability of models.

In the broader context, other properties that can be rel-

evant when considering explainability of ML algorithms

are safety/trust, accountability, reproducibility, transferabil-

ity, robustness and multi-objective trade-off or mismatched

objectives, see e.g. [6], [9]. For example, in societal contexts,

reasons for a decision often matter. Typical examples are

(semi-)automatic loan applications, hiring decisions, or risk

assessment for insurance applicants, where one wants to

know why a model gives a certain prediction and how one

might be affected by those decisions. In this context, and also

due to regulatory reasons, one goal is that decisions based

on ML models involve fair and ethical decision making. The

importance to give reasons for decisions of an ML algorithm

is also high for medical applications, where a motivation

is the provision of trust in decisions such that patients are

comfortable with the decision made. All this is supported by

the General Data Protection Regulation, which contains new

rules regarding the use of personal information. One compo-

nent of these rules can be summed up by the phrase ‘‘right

to an explanation’’ [32]. Finally, for ML models deployed for

decision-support and automation, in particular in potentially

changing environments, an underlying assumption is that

robustness and reliability can be better understood, or more

easily realized, if the model is interpretable [9].

One should also observe that explanations can be used

to manipulate. For illustration, [33] distinguishes between

the intuitive scientist, who seeks to make the most accu-

rate or otherwise optimal decision, and the intuitive lawyer,

who desires to justify a preselected conclusion. With that

in mind, one often aims for human-centric explanations of

black-box models. There are simple or purely algorithmic

explanations, e.g., based on emphasising relevant pixels in

an image. In so-called slow judgements tasks, an explanation

might more easily enforce confirmation biases. For example,

using human-centric explanations as evaluation baselines can

be biased towards certain individuals. Further, a review of

studies of experimental manipulations that require people

to generate explanations or imagine scenarios indicates that

people express greater confidence in a possibility, although

false, when asked to generate explanations for it or imagine

the possibility [34].

D. DOMAIN KNOWLEDGE

As outlined, domain knowledge is an essential part of explain-

ability; it is also essential for treating small data scenarios or

for performance reasons. A taxonomy for the explicit inte-

gration of knowledge into the ML pipeline, dubbed informed

ML, is proposed by [2]. Three aspects are involved:

• type of knowledge,

• representation and transformation of knowledge, and

• integration of knowledge into the ML approach.

See also the related works of [35], who use the term theory-

guided data science, or physics-informed learning by [36].

For the purpose of this article, we follow [2], who arrange

different types of knowledge along their degree of formality,

from the sciences, over (engineering or production) process

flow to world knowledge and finally individual (expert’s)

intuition. Knowledge can be assigned to several of the types

in this incomplete list.

In the sciences, knowledge is often given in terms ofmathe-

matical equations, such as analytic expressions or differential

equations, or as relations between instances and/or classes in

the form of rules or constraints. Its representation can, for

example, be in the form of ontologies, symmetries, or similar-

ity measures. Knowledge can also be exploited by numerical

simulations of models or through human interaction.

As ingredients of an ML approach, one considers the

training data, the hypothesis space, the training algorithm,

and the final model. In each of these, one can incorporate

additional knowledge. Feature engineering is a common and

longstanding way to incorporate knowledge into the training

data, whereas using numerical simulations to generate (addi-

tional) training data is a modern phenomena. One common

way to integrate knowledge into the hypothesis space is by

choosing the structure of the model. Examples of this include

defining a specific architecture of a NN or by choosing a

structure of probability distributions that observes existing

or non-existing links between variables. An example for the

training phase is modifying the loss function according to

additional knowledge, for example by adding a consistency

term. Finally, the obtained model can be put in relation to

existing knowledge, for example by checking known con-

straints for the predictions.

E. SCIENTIFIC CONSISTENCY

A fundamental prerequisite for generating reliable outcomes

for scientific applications is scientific consistency. This

means that the result obtained is plausible and consistent with

existing scientific principles. The selection and formulation

of the scientific principles to be met is based on domain

knowledge, where the manner of integration is the core

research question in areas such as informed ML. In the chain

of Fig. 1, scientific consistency can be considered a priori at

the model design stage or a posteriori by analysing the output

results. As pointed out by [2], scientific consistency at the

design stage can be understood as the result of a regularization

effect, where various ways exist to restrict the solution space

to scientifically consistent solutions. Reference [37] identi-

fies scientific consistency besides interpretability as one of

the five major challenges we need to tackle to successfully

adopt deep learning approaches in the geosciences. Refer-

ence [35] underlines the importance of consistency by defin-

ing it as an essential component to measure performance:

One of the overarching visions of [theory-guided

data science] is to include [. . . ] consistency as a

critical component of model performance along

with training accuracy and model complexity.

This can be summarized in a simple way by the
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TABLE 1. Group 1 includes approaches without any means of interpretability. In Group 2, a first level of interpretability is added by employing domain
knowledge to design the models or explain the outcomes. Group 3 deals with specific tools included in the respective algorithms or applied to their
outputs to make them interpretable. Finally, Group 4 lists approaches where scientific insights are gained by explaining the machine learning model itself.

following revised objective of model performance

[. . . ]: Performance ∝ Accuracy + Simplicity +

Consistency.

They discuss several ways to restrict the solution space to

physically consistent solutions, by (1) designing the model

family, such as specific network architectures; (2) guiding

a learning algorithm using, e.g., specific initializations, con-

straints, or (loss) regularizations; (3) refining the model out-

put, e.g., using closed-form equations or model simulations;

(4) formulating hybrid models of theory and ML, and (5)

augmenting theory-based models using real data such as data

assimilation or calibration.

Overall, the explicit restriction of the solution space to sci-

entifically consistent and plausible solutions is not a require-

ment to achieve valuable scientific outcomes. Neglecting this

restriction, however, means that a consistent and plausible

solution cannot be guaranteed, even if an optimal result has

been achieved from a mathematical point of view.

III. SCIENTIFIC OUTCOMES FROM MACHINE LEARNING

In this section, we review examples that useML and strive for

different levels of transparency, interpretability, or explain-

ability to produce scientific outcomes. To structure the dif-

ferent ML chains following Fig. 1, we define common groups

and describe representative papers for each. The core ingre-

dient is the basic ML chain, in which a model is learned

from given input data and with a specific learning paradigm,

yielding output results utilizing the learned model. In order

to derive a scientific outcome, either the output results or

the model is explained, where interpretability is the prereq-

uisite for explainability. Moreover, transparency is required

to explain a model. Generally, providing domain knowledge

to an algorithm means to enhance the input data, model,

optimizer, output results, or any other part of the ML algo-

rithm by using information gained from domain insights

such as laws of nature and chemical, biological, or physical

models [2]. Besides the purpose of explainability, integrating

domain knowledge can help with model tractability and reg-

ularization in scenarios where not enough data is available.

It might also increase the performance of a model or reduce

computational time.

In Table 1, we specify the four major groups and several

subgroups in more detail. We expect that examples for addi-

tional subgroups can be found, but that will not affect our

core observations. In particular, we distinguish between the

following components:

Transparency We consider amodel to be design-transparent

if the model, or a part of it, was chosen for specific

reasons, usually due to knowledge from the application

domain. We call a model algorithmically transparent if

the determination of the solution is obvious and trace-

able. In view of reproducible science, it is not surprising

that essentially all the examples we found can be con-

sidered to be model-transparent.

Interpretability We take a closer look at two types of inter-

pretability. First, we consider model components, such

as neurons in a NN or obtained latent variables, to be

interpretable if they are represented in a way that can

be further explained, e.g., with domain knowledge. Sec-

ond, the scientific outcome, i.e., the decision of the

model, can be interpreted using the input, e.g., by using

heatmaps.

Integration of domain knowledge We will look at several

ways in which domain knowledge can be integrated.

On the one hand, domain knowledge is needed to explain

— either to explain the scientific outcome or to derive

scientific findings from the model or individual model

components. On the other hand, domain knowledge can

be integrated to enforce scientifically plausible and con-

sistent results. This can be done in different ways; cf. [2].

Besides the integration of domain knowledge during the

learning process of the model, it can also be used for
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post-hoc checks, where the scientific plausibility and

consistency of the results is checked and possibly invalid

results are removed.

The following collection of research works is a

non-exhaustive selection from the literature of the last few

years, where we aim to cover a broad range of usages of ML

with a variety of scientific outcomes. Furthermore, we focus

on examples that utilize an extensive amount of scientific

domain knowledge from the natural sciences. Due to the

recent uptake of NNs in the sciences, these tend to be the

dominating ML approach in current literature. Nonetheless,

many of the described ML workflows or the approaches to

integrate domain knowledge can be performed with otherML

methods as well. Note that the choice of a group for a given

article is not always a clear judgement, particularly in view of

how and where domain knowledge is employed, and in what

form, and to what extent, an explanation is derived.

A. SCIENTIFIC OUTCOMES BY EXPLAINING OUTPUT

RESULTS

Many works address the derivation of outcomes by learning

an ML model and generalizing from known input-output

relations to new input-output pairs. This represents the lowest

degree of explainability without the need for a transparent

or interpretable model. In the case that a scientifically use-

ful outcome is to be estimated, most of these approaches

so far solely explain what the outcome is from a scientific

point of view (scientific explanation), but cannot answer the

question of why this specific outcome was obtained from an

algorithmic point of view (algorithmic explanation). Other

approaches attempt to scientifically explain the output in

terms of the specific corresponding input, given a learned

model. Here, interpretation tools are utilized, where the

model is used only as a means to an end to explain the result

and it is not explicitly analyzed itself.

1) PREDICTION OF INTUITIVE OUTCOMES

The derivation of intuitive physics is a task that is often con-

sidered in papers from the following group. Intuitive physics

are everyday-observed rules of nature that help us to predict

the outcome of events even with a relatively untrained human

perception [38].

Group 1a (Basic ML Chain): A black-box approach, or at

most model-transparent approach, is used to derive an out-

come. It is not interpretable and cannot be explained. The

outcome is not or only minimally explainable from a scientific

point of view.

For example, [39] uses video simulations to learn intu-

itive physics, e.g., about the stability of wooden block tow-

ers. They use ResNet-34 and GoogLeNet and formulate a

binary classification task to predict whether these towers

will fall. In a similar way, but with more complex scenes

or differently shaped objects, [40] predicts the physical sta-

bility of stacked objects using various popular convolu-

tional neural network (CNN) architectures. Reference [41]

predicts the spread of diseases on barley plants in micro-

scopic hyperspectral images by generating highly probable

image-based appearances over the course of several days.

They use cycle-consistent generative adversarial networks to

learn how an image will change from one day to the next or

to the previous day, albeit without any biological parameters

involved. Reference [42] presents an approach for the design

of new functional glasses that comprises the prediction of

characteristics relevant for manufacturing as well as end-use

properties of glass. They utilize NNs to estimate the liquidus

temperatures for various silicate compositions consisting of

up to eight different components. Generally, the identification

of an optimized composition of the silicates yielding a suit-

able liquidus temperature is a costly task and is oftentimes

based on trial-and-error. For this, they learn from several

hundred composites with known output properties and apply

the model to novel, unknown composites. In their workflow,

they also consider, outside of the ML chain, other quantities

of interest that are derived by physics-driven models. Refer-

ence [43] proposes a nonlinear regression approach employ-

ing NNs to learn closed form representations of partial differ-

ential equations (PDEs) from scattered data collected in space

and time, thereby uncovering the dynamic dependencies and

obtaining a model that can be subsequently used to forecast

future states. In benchmark studies, using Burgers’ equation,

nonlinear Schrödinger equation, or Navier-Stokes equation,

the underlying dynamics are learned from numerical simula-

tion data up to a specific time. The obtained model is used

to forecast future states, where relative L2-errors of up to

the order of 10−3 are observed. While the method inherently

models the PDEs and the dynamics themselves, the rather

general network model does not allow the drawing of direct

scientific conclusions on the structure of the underlying pro-

cess.

Group 1b: These models are not only model- but also

design-transparent to some extent, where the design is chosen

and motivated with certain intentions.

Besides the simple prediction network presented by [39]

in Group 1a, they also propose a network called PhysNet

to predict the trajectory of the wooden blocks in case the

tower is collapsing. It is formulated as a mask prediction net-

work trained for instance segmentation, where each wooden

block is defined as one class. The construction of Phys-

Net is made design-transparent in the sense that the net-

work is constructed to capture the arrangement of blocks

by using alternating upsampling and convolution layers, and

an increased depth to reason about the block movement,

as well. PhysNet outperforms human subjects on synthetic

data and achieves comparable results on real data. Refer-

ence [44] designed a multi-source NN for exoplanet tran-

sit classification. They integrate additional information by

adding identical information about centroid time-series data

to all input sources, which is assumed to help the network

learn important connections, and by concatenating the output

of a hidden layer with stellar parameters, as it is assumed they

are correlated with classification. Reference [45] introduces a
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framework that calculates physical concepts from color-depth

videos that estimates tool and tool-use such as cracking a

nut. In their work, they learn task-oriented representations

for each tool and task combination defined over a graph

with spatial, temporal, and causal relations. They distinguish

between 13 physical concepts, e.g., painting a wall, and

show that the framework is able to generalize from known to

unseen concepts by selecting appropriate tools and tool-uses.

A hybrid approach is presented by [46] to successfully model

the properties of contaminant dispersion in soil. The authors

extract temporal information from dynamic data using a long

short-termmemory network and combine it with static data in

a NN. In this way, the network models the spatial correlations

underlying the dispersion model, which are independent of

the location of the contaminant. Reference [47] has proposed

a data-centric approach for scientific design based on the

combination of a generative model for the data being con-

sidered, e.g., an autoencoder trained on genomes or proteins,

and a predictive model for a quantity or property of interest,

e.g., disease indicators or protein fluorescence. For DNA

sequence design, these two components are integrated by

applying the predictive model to samples from the generative

model. In this way, it is possible to generate new synthetic

data samples that optimize the value of the quantity or prop-

erty by leveraging an adaptive sampling technique over the

generative model; see also [48].

Group 1c: Here, in addition to Group 1b, the design

process is influenced by domain knowledge regarding the

model, the cost function, or the feature generation process

with the particular aim to enhance scientific consistency and

plausibility.

For example, [49], [50] use physics-informed approaches

for applications such as fluid simulations based on the incom-

pressible Navier-Stokes equations, where physics-based

losses are introduced to achieve plausible results. The idea

in [49] is to use a transparent cost function design by refor-

mulating the condition of divergence-free velocity fields into

an unsupervised learning problem at each time step. The

random forest model used in [50] to predict a fluid particle’s

velocity can be viewed as a transparent choice per se due

to its simple nature. Reference [51] classifies land use and

land cover and their changes based on remote sensing satellite

timeseries data. They integrate domain knowledge about the

transition of specific land use and land cover classes, such as

forest or burnt areas, to increase the classification accuracy.

They utilize a discriminative random field with transition

matrices that contain the likelihoods of land cover and land

use changes to enforce, for example, that a transition from

burnt area to forest is unlikely.

2) PREDICTION OF SCIENTIFIC PARAMETERS AND

PROPERTIES

Although the approaches just described set up prediction as a

supervised learning problem, there is still a gap between com-

mon supervised tasks, e.g., classification, object detection,

and prediction, and actual understanding of a scene and its

reasoning. Like a layman in the corresponding scientificfield,

the methods presented so far do not learn a model that is able

to capture and derive scientific properties and dynamics of

phenomena or objects and their environment, as well as their

interactions. Therefore, the model cannot inherently explain

why an outcome was obtained from a scientific viewpoint.

Reference [52] labels these respective approaches as bottom-

up, where observations are directly mapped to an estimate

of some behavior or some outcome of a scenario. To tackle

the challenge of achieving a higher explainability and a better

scientific usability, several so-called top-down classification

and regression frameworks have been formulated that infer

scientific parameters. In both cases, only the scientific expla-

nation is sought.

Group 2a: In theseMLmodels, domain knowledge is incor-

porated, often to enforce scientific consistency. Therefore,

the design process is partly transparent and tailored to the

application. The outcome is explainable from a scientific

point of view since scientific parameters and properties are

derived, which can be used for further processing.

For example, [53] detects and tracks objects in videos in

an unsupervised way. The authors use a regression CNN and

introduce terms during training that measure the consistency

of the output when compared to physical laws which specif-

ically and thoroughly describe the dynamics in the video.

In this case, the input of the regression network is a video

sequence and the output is a time-series of physical parame-

ters such as the height of a thrown object. By incorporating

domain knowledge and image properties into their loss func-

tions, part of their design process becomes transparent and

explainability is gained due to comparisons to the underlying

physical process. However, the model and the algorithms

are not completely transparent since standard CNNs with an

ADAM minimizer are employed. Although these choices of

model and algorithms are common in ML, they are usually

motivated by their good performance, and not because there

is any application-driven reasoning behind it; thus, there is no

design transparency on this aspect. Furthermore, the reason

why such choice works for this highly nonconvex problem

is currently not well understood from a mathematical point

of view; therefore, no algorithmic transparency is present.

Reference [54] introduces Physics101, a dataset of over

17,000 video clips containing 101 objects of different char-

acteristics, which was built for the task of deriving physical

parameters such as velocity and mass. In their work, they

use the LeNet CNN architecture to capture visual as well as

physical characteristics while explicitly integrating physical

laws based on material and volume to aim for scientific

consistency. Their experiments show that predictions can be

made about the behavior of an object after a fall or a collision

using estimated physical characteristics, which serve as input

to an independent physical simulation model. Reference [55]

introduces SMASH, which extracts physical collision param-

eters from videos of colliding objects, such as pre- and

post collision velocities, to use them as inputs for existing

physics engines for modifications. For this, they estimate the
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position and orientation of objects in videos using constrained

least-squares estimation in compliance with physical laws

such as momentum conservation. Based on the determined

trajectories, parameters such as velocities can be derived.

While their approach is based more on statistical parameter

estimation than ML, their model and algorithm building pro-

cess is completely transparent. Individual outcomes become

explainable due to the direct relation of the computations to

the underlying physical laws.

Reference [56] introduces Newtonian NNs in order to

predict the long-term motion of objects from a single color

image. Instead of predicting physical parameters from the

image, they introduce 12 Newtonian scenarios serving as

physical abstractions, where each scenario is defined by phys-

ical parameters defining the dynamics. The image, which

contains the object of interest, is mapped to a state in one

of these scenarios that best describes the current dynamics

in the image. Newtonian NNs are two parallel CNNs: one

encodes the images, while the other derives convolutional

filters from videos acquired with a game engine simulating

each of the 12 Newtonian scenarios. The specific coupling

of both CNNs in the end leads to an interpretable approach,

which also (partially) allows for explaining the classification

results of a single input image.

A tensor-based approach to ML for uncertainty quantifi-

cation problems can be found in [57], where the solutions to

parametric convection-diffusion PDEs are learned based on a

few samples. Rather than directly aiming for interpretability

or explainability, this approach helps to speed up the pro-

cess of gaining scientific insight by computing physically

relevant quantities of interest from the solution space of

the PDE. As there are convergence bounds for some cases,

the design process is to some extent transparent and benefits

from domain knowledge.

An information-based ML approach using NNs to solve

an inverse problem in biomechanical applications was pre-

sented in [58]. Here, in mechanical property imaging of soft

biological media under quasi-static loads, elasticity imag-

ing parameters are computed from estimated stresses and

strains. For a transparent design of the ML approach, domain

knowledge is incorporated in two ways. First, NNs for a

material model are pre-trained with stress-strain data, gen-

erated using linear-elastic equations, to avoid non-physical

behavior. Second, finite-element analysis is used to model the

data acquisition process.

Group 2b: These ML models are highly transparent, which

means that the design process as well as the algorithmic

components are fully accessible. The outcome of the model

is explainable and the scientific consistency of the outcome is

enforced.

For organic photovoltaics material, an approach utilizing

quantum chemistry calculations and ML techniques to cali-

brate theoretical results to experimental data was presented

by [59], [60]. The authors consider previously performed

experiments as current knowledge, which is embedded within

a probabilistic non-parametric mapping. In particular, GPs

were used to learn the deviation of properties calculated

by computational models from the experimental analogues.

By employing the chemical Tanimoto similarity measure and

building a prior based on experimental observations, design

transparency is attained. Furthermore, since the prediction

results involves a confidence in each calibration point being

returned, the user can be informed when the scheme is being

used for systems for which it is not suited [59]. In [60],

838 high-performing candidate molecules have been identi-

fied within the explored molecular space thanks to the newly

possible efficient screening of over 51,000 molecules.

In [61], a data-driven algorithm for learning the coef-

ficients of general parametric linear differential equations

from noisy data was introduced, solving a so-called inverse

problem. The approach employs GP priors that are tailored to

the corresponding and known type of differential operators,

resulting in design and algorithmic transparency. The combi-

nation of rather generic ML models with domain knowledge

in the form of the structure of the underlying differential

equations leads to an efficient method. Besides classical

benchmark problems with different attributes, the approach

was used on an example application in functional genomics,

determining the structure and dynamics of genetic networks

based on real expression data.

Group 2c: These ML models are similar to the models

in Group 2a, but besides enforced scientific consistency

and plausibility of the explainable outcome, an additional

post-hoc consistency check is performed.

In [62], a deep learning approach for Reynolds-averaged

Navier-Stokes (RANS) turbulence modelling was presented.

Here, domain knowledge led to the construction of a network

architecture that embedded invariance using a higher-order

multiplicative layer. This was shown to result in significantly

more accurate predictions compared to a generic, but less

interpretable, NN architecture. Further, the improved predic-

tion on a test case that had a different geometry than any of

the training cases indicates that improved RANS predictions

for more than just interpolation situations seem achievable.

A related approach for RANS-modeled Reynolds stresses for

high-speedflat-plate turbulent boundary layers was presented

in [63], which uses a systematic approach with basis tensor

invariants proposed by [64]. Additionally, a metric of pre-

diction confidence and a nonlinear dimensionality reduction

technique are employed to provide a priori assessment of the

prediction confidence.

3) INTERPRETATION TOOLS FOR SCIENTIFIC OUTCOMES

Commonly used feature selection and extraction methods

enhance the interpretability of the input data, and thus can

lead to outcomes that can be explained by interpretable input.

Other approaches use interpretation tools to extract infor-

mation from learned models and to help to scientifically

explain the individual output or several outputs jointly. Often,

approaches are undertaken to present this information via

feature importance plots, visualizations of learned represen-

tations, natural language representations, or the discussion of
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examples. Nonetheless, human interaction is still required to

interpret this additional information, which has to be derived

ante-hoc or with help of the learned model during a post-hoc

analysis.

Group 3a: These ML approaches use interpretation tools

to explain the outcome by means of an interpretable repre-

sentation of the input. Such tools include feature importance

plots or heatmaps.

While handcrafted and manually selected features are typi-

cally easier to understand, automatically determined features

can reveal previously unknown scientific attributes and struc-

tures. Reference [65], for example, proposes FINE (feature

importance in nonlinear embeddings) for the analysis of

cancer patterns in breast cancer tissue slides. This approach

relates original and automatically derived features to each

other by estimating the relative contributions of the original

features to the reduced-dimensionality manifold. This proce-

dure can be combined with various, possibly intransparent,

nonlinear dimensionality reduction techniques. Due to the

feature contribution detection, the resulting scheme remains

interpretable.

Arguably, visualizations are one of the most widely used

interpretation tools. Reference [21] gives a survey of visual

analytics in deep learning research, where such visualization

systems have been developed to support model explanation,

interpretation, debugging, and improvement. The main con-

sumers of these analytics are the model developers and users

as well as non-experts. Reference [66] uses interpretation

tools for image-based plant stress phenotyping. The authors

train a CNN model and identify the most important feature

maps in various layers that isolate the visual cues for stress

and disease symptoms. They produce so-called explanation

maps as sums of the most important features maps indicated

by their activation level. A comparison of manually marked

visual cues by an expert and the automatically derived expla-

nation maps reveals a high level of agreement between the

automatic approach and human ratings. The goals of their

approach are the analysis of the performance of their model,

the provision of visual cues that are human-interpretable to

support the prediction of the system, and a provision of

important cues for the identification of plant stress. Ref-

erences [39] and [67] use attention heatmaps to visualize

the stackability of multiple wooden blocks in images. They

conduct a conclusion study by applying localized blurring

to the image and collecting the resulting changes in the

stability classification of the wooden blocks into a heatmap.

Moreover, [67] provides a first step towards a physics-aware

model by using their trained stability predictor and heatmap

analysis to provide stackability scores for unseen object sets,

for the estimation of an optimal placement of blocks, and to

counterbalance instabilities by placing additional objects on

top of unstable stacks.

As another example, ML has been applied to functional

magnetic resonance imaging data to design biomarkers that

are predictive of psychiatric disorders. However, only ‘‘sur-

rogate’’ labels are available, e.g., behavioral scores, and so

the biomarkers themselves are also ‘‘surrogates’’ of the opti-

mal descriptors [68], [69]. The biomarker design promotes

spatially compact pixel selections, producing biomarkers for

disease prediction that are focused on regions of the brain.

These are then assessed by expert physicians. As the analysis

is based on high-dimensional linear regression approaches,

transparency of the ML model is assured. Reference [70]

introduces DeepTune, a visualization framework for CNNs,

for applications in neuroscience. DeepTune consists of an

ensemble of CNNs that learn multiple complementary repre-

sentations of natural images. The features from these CNNs

are fed into regression models to predict the firing rates of

neurons in the visual cortex. The interpretable DeepTune

images, i.e., representative images of the visual stimuli for

each neuron, are generated from an optimization process and

pooling over all ensemble members.

Classical tools such as confusion matrices are also used

as interpretation tools on the way to scientific outcomes.

In a bio-acoustic application for the recognition of anurans

using acoustic sensors, [71] uses a hierarchical approach to

jointly classify on three taxonomic levels, namely the fam-

ily, the genus, and the species. Investigating the confusion

matrix per level enabled for example the identification of

bio-acoustic similarities between different species.

Group 3b: These models are design-transparent in the

sense that they use specially tailored components such as

attention modules to achieve increased interpretability. The

output is explained by the input using the specially selected

components.

In [72], [73] attention-based NN models are employed to

classify and segment histological images, e.g., microscopic

tissue images, magnetic resonance imaging (MRI), or com-

puted tomography (CT) scans. Reference [72] found that the

employed modules turned out to be very attentive to regions

of pathological, cancerous tissue and non-attentive in other

regions. Furthermore, [73] builds an attentive gated network

that gradually fitted its attention weights with respect to

targeted organ boundaries in segmenting tasks. The authors

also used their attention maps to employ a weakly super-

vised object detection algorithm, which successfully created

bounding boxes for different organs.

Interpretability methods have also been used for applica-

tions that utilize time-series data, often byway of highlighting

features of the sequence data. For example, [74] applies

attention modules in NNs trained on genomic sequences for

the identification of important sequence motifs by visualizing

the attention mask weights. They propose a genetic archi-

tect that finds a suitable network architecture by iteratively

searching over various NN building blocks. In particular,

they state that the choice of the NN architecture highly

depends on the application domain, which is a challenge if

no prior knowledge is available about the network design.

It is cautioned that, depending on the optimized architec-

ture, attention modules and expert knowledge may lead to

different scientific insights. Reference [75] uses attention

modules for genomics in their AttentiveChrome NN. The
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network contains a hierarchy of attention modules to gain

insights about where and on what the network has focused

on and, thus, gain interpretability of the results. Also [76]

developed a hierarchical attention-based interpretation tool

called RETAIN (REverse Time AttentIoN) in healthcare.

The tool identifies influential past visits of a patient as well

as important clinical variables during these visits from the

patient’s medical history to support medical explanations.

Attention modules in recurrent NNs for multi-modal sensor-

based activity recognition have been used by [77]. Depending

on the activity, their approach provides the most contributing

body parts, modals, and sensors for the network’s decision.

Group 3c: As in Group 3b, these ML approaches use

interpretation tools for a better understanding of the model’s

decision. Moreover, they integrate domain knowledge to

enhance the scientific consistency and plausibility, for exam-

ple, in combination with the outcome of interpretation

tools.

For example, [78] discusses explainable ML for scien-

tific discoveries in material sciences. In their work, they

propose an ensemble of simple models to predict mate-

rial properties along with a novel evaluation focusing on

trust by quantifying generalization performance. Moreover,

their pipeline contains a rationale generator that provides

decision-level interpretations for individual predictions and

model-level interpretations for the whole regression model.

In detail, they produce interpretations in terms of prototypes

that are analyzed and explained by an expert, as well as

global interpretations by estimating feature importance for

material sub-classes. Moreover, they use domain knowledge

for the definition of material sub-classes and integrate it into

the estimation process. Reference [79] proposes contextual

decomposition explanation penalization, which constrains a

classification or regression result to more accurate and more

scientifically plausible results by leveraging the explained

outcome of interpretation tools. They add an explanation

term in the loss function, which compares the interpretation

outcome (e.g., a heatmap indicating the important parts in

the image) and an interpretation provided by the user. They

determine a more accurate model from an International Skin

Imaging Collaboration dataset whose goal is to classify can-

cerous and non-cancerous images, by learning that colorful

patches present only in the benign data are not relevant for

classification.

Group 3d: These approaches use the common feature-

oriented representation with focus on the disentanglement of

the underlying factors of variation in a system, which can

be explained by an expert afterwards. Domain knowledge is

employed in the design of the model and in the interpretation

of the outcome.

A broad framework leverages unsupervised learning

approaches to learn low-complexity representations of phys-

ical process observations. In many cases where the underly-

ing process features a small number of degrees of freedom,

it is shown that nonlinear manifold learning algorithms are

able to discern these degrees of freedoms as the component

dimensions of low-dimensional nonlinear manifold embed-

dings, which preserve the underlying geometry of the original

data space [80]–[82]. It can be seen that the embedding

coordinates relate to known physical quantities. At this stage,

ongoing research is focused on obtaining new scientific out-

comes in new situations using this promising approach. In a

similar way, [83] and [84] use principal component analysis

and the derived interpretable principal components for explo-

ration of different phases, phase-transition, and crossovers in

classical spin models. Embedded feature selection schemes

have been recently explored to establish or refine models

in physical processes. Using a sparsity-promoting penalty,

they propose groups of variables that may explain a property

of interest and promote the simplest model, i.e., the model

involving the fewest variables possible while achieving a

target accuracy. Domain knowledge is employed during the

selection of the dictionary of candidate features. The appli-

cation of sparsity has also proved fruitful in the broader

class of problems leveraging PDEs and dynamical system

models [85]–[89].

The combination of parse trees with ML is investigated

in [90], [91]. A so-called syntax-direct variational autoen-

coder is introduced in [90], where syntax and semantic con-

straints are used in a generative model for structured data.

As an application, the drug properties of molecules are pre-

dicted. The learned latent space is visually interpreted, while

the diversity of the generated molecules is interpreted using

domain expertise. The work in [91] uses a NN during aMonte

Carlo tree search to guide its finding of an expression for

symbolic regression that conforms to a set of data points and

has the desired leading polynomial powers of the data. The

NN learns the relation between syntactic structure and lead-

ing powers. As a proof-of-concept application, the authors

are able to learn a physical force field, where the leading

powers in the short and long ranges are known by domain

experts and can be used as asymptotic constraints. Refer-

ence [92] proposes a sparsity-enforcing technique to recover

domain-specific meaning for the abstract embedding coordi-

nates obtained from unsupervised nonlinear dimensionality

reduction approaches in a principled fashion. The ansatz is to

explain the embedding coordinates as nonlinear compositions

of functions from a user-defined dictionary. As an illustrative

example, the ethanol molecule is studied, where the approach

identifies the bond torsions that explain the torus obtained

from the embeddingmethod, which reflects the two rotational

degrees of freedom.

Group 3e: In addition to the works in Group 3d, domain

knowledge is employed to perform a posteriori consistency

checks on feature-oriented representations.

Feature selection schemes using embedded methods, sim-

ilar to the previous group, have been used in areas such

as material sciences [93], [94]. In contrast to the preceding

works, additional consistency checks on the outcome of the

predictive model are performed based on domain expertise,

including the robustness of the model and in particular their

extrapolation capability for predicting new materials.
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B. SCIENTIFIC OUTCOMES BY EXPLAINING MODELS

In the following examples, either interpretation tools are

used to project processes in the model into a space that

is interpretable or the model is designed inherently to be

interpretable. In this way, models and their components can

be explained utilizing domain knowledge.

Group 4a: These models are designed in a transparent

way and the model design enforces that model components

are interpretable and scientifically explainable. Due to their

design, scientific consistency and plausibility is enforced,

even if not as a primary goal. The explanation of specific

model components is meant to lead to novel scientific dis-

coveries or insights.

Complex ML methods such as NNs, for example, can be

customized to a specific scientific application so that the

used architecture restricts or promotes properties that are

desirable in the data modeled by the network. For example,

in [95], an application of ML for epidemiology leverages a

networked dynamical system model for contagion dynamics,

where nodes correspond to subjects with assigned states; thus,

most properties of the ML model match the properties of

the scientific domain considered. A complex NN is reduced

by [96] to understand processes in neuroscience. By reducing

the number of units in the complexmodel bymeans of a quan-

tified importance utilizing gradients and activation values,

a simple NN with one hidden layer is derived that can be eas-

ily related to neuroscientific processes. Reference [97] con-

structs a NN for computing Koopman eigenfunctions from

data. Motivated by domain knowledge, the authors employ an

auxiliary network to parameterize the continuous frequency.

Thereby, a compact autoencoder model is obtained, which,

in addition, is interpretable. For the example of the nonlinear

pendulum, two eigenfunctions are learned with a NN, which

can be mapped into magnitude and phase coordinates. In this

interpretable form, it can be observed that the magnitude

traces level sets of the Hamiltonian energy, a new insight that

turned out to be consistent with recent theoretical derivations

previously unknown to the authors. Reference [98] introduces

visible NNs, which encode the hierarchical structure of a gene

ontology tree into aNN, either from literature or inferred from

large-scale molecular data sets. This enables transparent bio-

logical interpretation, while successfully predicting effects

of gene mutations on cell proliferation. Furthermore, it is

argued that the employed deep hierarchical structure captures

many different clusters of features at multiple scales and

pushes interpretation from themodel input to internal features

representing biological subsystems. In their work, despite no

information about subsystem states being provided during

model training, previously undocumented learned subsystem

states could be confirmed by molecular measurements.

Beside NNs, other ML algorithms can also be used to

derive scientific outcomes from an interpretable model. Ref-

erence [99] use theML algorithm ‘Sir Isaac’ to infer a dynam-

ical model of biological time-series data to understand and

predict dynamics of worm escape behavior. They model a

system of differential equations, where the number of hidden

variables is determined automatically from the system, and

their meaning can be explained by an expert.

Reference [100] introduces SciNet, a modified variational

autoencoder that learns a representation from experimental

data and uses the learned representation to derive physical

concepts from it rather than from the experimental input

data. The learned representation is forced to be much simpler

than the experimental data, for example by being captured

in a few neurons, and it contains the explanatory factors of

the system, such as the physical parameters. This is proven

by the fact that physical parameters and the activations of

the neurons in the hidden layers have a linear relationship.

Additionally, [101] constructs the bottleneck layer in their

NN to represent physical parameters to predict the outcome of

a collision of objects from videos. However, the architecture

of the bottleneck layer is not learned, but designed with prior

knowledge about the underlying physical process.

Understanding structures such as groups, relations, and

interactions is one of the main goals to achieve scientific

outcomes. However, it constitutes a core challenge, and so far

only limited amount of work has been conducted in this area.

Reference [102], for example, introduces a grouping layer in

a graph-based NN called GroupINN to identify subgroups of

neurons in an end-to-end model. In their work, they build a

network for the analysis of time-series of functional magnetic

resonance images of the brain, which are represented as

functional graphs, with the goal of revealing relationships

between highly predictive brain regions and cognitive func-

tions. Instead of working with the whole functional graph,

they exploit a grouping layer in the network to identify groups

of neurons, where each neuron represents a node in the graph

and corresponds to a physical region of interest in the brain.

The grouped nodes in the coarsened graph are assigned to

regions of interest, which are useful for prediction of cogni-

tive functions, and the connections between the groups are

defined as functional connections.

Reference [103] introduces neural interaction detection,

a framework with variants of feedforward NNs for detect-

ing statistical interactions. By examining the learned weight

matrices of the hidden units, their framework was able to

analyze feature interactions in a Higgs boson dataset. Specif-

ically, they analyze feature interactions in simulated particle

environments that originate from the decay of a Higgs boson.

Deep tensor networks are used by [104] in quantum chemistry

to predict molecular energy up to chemical accuracy, while

allowing interpretations. A so-called local chemical potential,

a variant of sensitivity analysis where one measures the effect

on the NN output of inserting a charge at a given location,

can be used to gain further chemical insight from the learned

model. As an example, a classification of aromatic rings

with respect to their stability can be determined from these

three-dimensional response maps.

Group 4b: These ML models are designed with a high

degree of transparency and with the goal to derive scientif-

ically plausible results. Due to this, the outcome of the model

and the model components themselves are interpretable and
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can be scientifically explained. In contrast to the works pre-

sented in group 4a, the following examples employ methods

that are also algorithmically transparent.

Different types of physics-aware GP models in remote

sensing were studied by [105] with the goal to estimate

bio-physical parameters such as leaf area index. In one case,

a latent force model that incorporates ordinary differential

equations is used in inverse modelling from real in-situ

data. The learned latent representation allowed an interpre-

tation in view of the physical mechanism that generated

the input-output observed relations, i.e., one latent function

captured the smooth and periodic component of the output,

while two other focus on the noisier part with an important

residual periodical component. So-called order parameters

in condensed matter physics are analysed in [106], [107].

Using domain knowledge, a kernel is introduced to inves-

tigate O(3)-breaking orientational order. A two-class and a

multi-class setting are tackled with support vector machines

(SVM). The decision function is physically interpreted as an

observable corresponding to an order parameter curve, while

the bias-term of the SVM can be exploited to detect phase

transitions. Furthermore, nontrivial blocks of the SVM kernel

matrices can be identified with so-called spin color indices.

In these works, the analytical order parameters for spin and

orbital systems could be extracted.

C. RELATED SURVEYS ABOUT MACHINE LEARNING IN

THE NATURAL SCIENCES

Reference [108] gives on overview on recent research using

ML for molecular and materials science. Given that stan-

dard ML models are numerical, the algorithms need suit-

able numerical representations that capture relevant chemi-

cal properties, such as the Coulomb matrix and graphs for

molecules, and radial distribution functions that represent

crystal structures. Supervised learning systems are in com-

mon use to predict numerical properties of chemical com-

pounds and materials. Unsupervised learning and genera-

tive models are being used to guide chemical synthesis and

compound discovery processes, where deep learning algo-

rithms and generative adversarial networks have been suc-

cessfully employed. Alternative models exploiting the sim-

ilarities between organic chemistry and linguistics are based

on textual representations of chemical compounds.

A review on the manifold recent research topics in the

physical sciences is given by [109], with applications in par-

ticle physics and cosmology, quantum many-body physics,

quantum computing, and chemical and material physics. The

authors observe a surge of interest in ML, while noting that

the research is starting to move from exploratory efforts on

toy models to the use of real experimental data. It is stressed

that an understanding of the potential and the limitations of

ML includes insight into the breaking point of these methods,

but also the theoretical justification of the performance in

specific situations, be it positive or negative.

In single-cell genomics, computational data-driven analy-

sis methods are employed to reveal the diverse simultaneous

facets of a cell’s identity, including a specific state on a

developmental trajectory, the cell cycle, or a spatial context.

The analysis goal is to obtain an interpretable representation

of the dynamic transitions a cell undergoes that allows a

determination of different aspects of cellular organization

and function. There is an emphasis on unsupervised learn-

ing approaches to cluster cells from single-cell profiles, and

thereby to systematically detect previously unknown cellu-

lar subtypes. Defining markers for these subtypes are then

investigated in a second step. See [110] for a review on key

questions, progress, and open challenges in this application

field.

Several ML approaches have been used in biology and

medicine to derive new insights, as described in [111] for the

broad class of deep learning methods. Supervised learning

mostly focuses on the classification of diseases and disease

types, patient categorization, and drug interaction prediction.

Unsupervised learning has been applied to drug discovery.

The authors point out that in addition to the derivation of

new findings, an explanation of these is of great importance.

Furthermore, the need in deep learning for large training

datasets poses a limit to its current applicability beyond

imaging (through data augmentation) and so-called ‘omics’

studies. An overview of deep learning approaches in systems

biology is given in [112]. The authors describe how one

can design NNs that encode the extensive, existing network-

and systems-level knowledge that is generated by combing

diverse data types. It is said that such designs inform the

model on aspects of the hierarchical interactions in the bio-

logical systems that are important formaking accurate predic-

tions but are not available in the input data. Reference [113]

discusses the difference between explainability and causality

for medical applications, and the necessity of a person to

be involved. For the successful application of ML for drug

design, [114] identifies five ‘‘grand challenges’’: obtaining

appropriate datasets, generating new hypotheses, optimiz-

ing in a multi-objective manner, reducing cycle times, and

changing the research culture and mindset. These underlying

themes should be valid for many scientific endeavours.

Reference [37] gives an overview of ML research in Earth

system science. The authors conclude that, while the gen-

eral cycle of exploration, hypotheses generation and testing

remains the same, modern data-driven science and ML can

extract patterns in observational data to challenge complex

theories and Earth system models, and thereby strongly com-

plement and enrich geoscientific research. Moreover, [115]

observes that a close collaboration with domain experts in

the geoscientific area and ML researchers is necessary to

solve novel and relevant tasks. They state that developing

interpretable and transparent methods is one of the major

goals to understand patterns and structures in the data and

to turn it into scientific value.

IV. DISCUSSION

In this work, we reviewed the concept of explainable machine

learning and discerned between transparency, interpretabil-
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TABLE 2. Collection of all references regarding transparency ( : at most model transparent, without color: design transparent, : design +

algorithmically transparent), interpretability, and integration of domain knowledge.

ity, and explainability. We also discussed the possibility of

influencing model design choices and the step of interpreting

algorithmic outputs by domain knowledge and a posteriori

consistency checks. We presented a more fine-grained char-

acterization of different stages of explainability, which we

briefly elaborated on by means of several recent exemplary

works in the field of machine learning in the natural sciences;

see Table 2 for a summary.

While machine learning is employed in uncountable sci-

entific projects and publications nowadays, the vast majority

is not concerned with aspects of interpretability or explain-

ability. We argue that the latter is crucial for extracting truly

novel scientific results and ideas from employing ML meth-

ods. Therefore, we hope that this survey provides new ideas

and methodologies to scientists looking for means to explain

their algorithmic results or to extract relevant insights on the

corresponding study object.

Finally, we note that as an additional component in the

scientific data analysis workflow of the future, we expect

causal inference [116], [117] to play a role. Having said this,

we believe that causal inference will require even more basic

research thanwhat is still needed for the uptake of explainable

machine learning in the natural sciences.
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