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Reliability Scores From Saliency Map Clusters for
Improved Image-Based Harvest-Readiness

Prediction in Cauliflower
Jana Kierdorf and Ribana Roscher , Member, IEEE

Abstract— Cauliflower is a hand-harvested crop that must
fulfill high-quality standards in sales making the timing of
harvest important. However, accurately determining harvest-
readiness can be challenging due to the cauliflower head being
covered by its canopy. While deep learning enables automated
harvest-readiness estimation, errors can occur due to field-
variability and limited training data. In this letter, we analyze
the reliability of a harvest-readiness classifier with interpretable
machine learning. By identifying clusters of saliency maps,
we derive reliability scores for each classification result using
knowledge about the domain and the image properties. For
unseen data, the reliability can be used to 1) inform farmers
to improve their decision-making and 2) increase the model
prediction accuracy. Using RGB images of single cauliflower
plants at different developmental stages from the GrowliFlower
dataset, we investigate various saliency mapping approaches and
find that they result in different quality of reliability scores. With
the most suitable interpretation tool, we adjust the classification
result and achieve a 15.72% improvement of the overall accuracy
to 88.14% and a 15.44% improvement of the average class
accuracy to 88.52% for the GrowliFlower dataset.

Index Terms— Harvest prediction, interpretability, reliability,
saliency mapping, spectral clustering (SC).

I. INTRODUCTION

ACCURATE harvest time forecasts are crucial for crop
quantity and profitability in agriculture. For cauliflower,

high-quality requirements for sale further complicate this
process. To meet these standards, harvesting must be precisely
timed within a short window. Since cauliflower growth is
highly affected by climate, fields planted at different times may
be ready for harvest simultaneously, and plants may develop
differently within a single field. Therefore, it is a common
agricultural practice that workers harvest plants individually
by hand at different times. As the cauliflower head is covered
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by its canopy, the workers touch the head inside the plant and
estimate the size, making harvesting highly time-consuming.

In digital agriculture, field monitoring is supported by
satellite or UAV imagery [2] to observe plant development
throughout the entire growth period. Machine learning
methods increasingly form the basis for analyzing the acquired
data, for example, to classify crop ripeness on a large scale [8]
or to provide detailed predictions about harvest ripeness,
the amount of harvest, or the date of harvest-readiness [6].
Predicting crop traits related to harvest is of economic benefit
to farmers, so the model must be reliable, and the farmer
should be able to have confidence in the model’s decision.

We address the task of harvest-readiness estimation of
single cauliflower plants and aim to derive a reliability
score for the model’s output that can be used to support
the farmer in their decision-making process. To reach our
goal, we use saliency mapping to identify image regions
that have distinctive characteristics important for the model
decision [1], [11]. We extend the clustering approach of
saliency maps by [7] and combine the maps with knowledge
about our application domain and the image properties to
derive reliability scores of the model’s output. Similar to
our approach, some previous works also aim to improve
the model through the integration of interpretations and
explanations [5], [12], [14]. However, these works present
ad hoc frameworks where the interaction between model and
explanation is either learned during training or integrated
through human interactions via retraining. Our work differs in
that we propose a framework for deriving a reliability score
for classification predictions that operates post-hoc during
inference time without human interaction. Thus, the system
can be applied to already trained models without changing
the model architecture and without the need for re-training.

The main contributions of this letter are as follows.
1) A versatile post-hoc approach to derive intuitive reliabil-

ity scores without time-consuming human interaction;
2) A use case where the reliability scores are used

to improve harvest-readiness predictions on the
GrowliFlower dataset by 15.73% to an overall accuracy
of 88.14% and by 15.44% to an average class accuracy
of 88.52%.

II. MATERIALS AND METHODS

A. Framework

We solve the task of estimating the harvest-readiness of
single cauliflower plants with deep learning-based image
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Fig. 1. Our framework. The different numbers represent (1) classification step, (2) saliency mapping step, and (3) clustering step of saliency maps with the
assignment of reliability to the clusters by relating the confidence scores of the model to the corresponding saliency maps. (4) Dissemination to the farmer
how reliable the model is while (5) adjustment step, where the predictions of (1) are improved using the reliability score of (3).

classification and combine it with an estimation of the
reliability of the classification through clustering of saliency
maps. Fig. 1 shows an overview of the five-step framework.

1) Classification: In the first step, images are classified into
the classes Ready and Not ready for harvest within
three days. We use a ResNet18 network [3]; however,
the framework is flexible regarding the classifier.

2) Saliency Mapping: In the second step, we compute
saliency maps for validation and test data post-hoc using
the learned classifier. We consider gradient-weighted
class activation mapping (Grad-CAM) [13], occlusion
sensitivity mapping (OSM) [15], and local interpretable
model-agnostic explanations (LIME) [10].

3) Clustering: We employ spectral clustering (SC) to
identify groups of saliency maps computed on the
validation data and derive reliability scores. The mean
saliency map per cluster, denoted as prototype, is further
analyzed. Test data can be assigned a reliability score by
assigning its saliency map to the nearest cluster.

4) Dissemination: The reliability score is intuitively usable
due to its value range between 0 and 1 and is
communicated to the user together with the classification
result.

5) Adjustment: In our use case, the classification results
are adjusted based on the cluster assignments of the
saliency maps to determine the final predicted classes.
The decision depends on the summed percentage of false
positives (FPs) and false negatives (FNs) per cluster.
The evaluation of the classification step provides the
assignments to FP and FN.

The framework does not require human interaction and can
be applied to different models. However, human interaction
is possible to further improve the classification results and
reliability measures by analyzing and evaluating the human-
understandable clusters of saliency maps.

B. Data

We use the images of the GrowliFlowerR dataset [4]
of Field 2 from the dates 2021-08-23, 2021-08-25,
2021-08-30, and 2021-09-03 with given information about the
harvest-readiness within the next three days. Three days is
a compromise between harvest-readiness prediction accuracy

and practicability of data acquisition. We divide the data into
the classes Not ready and Ready. The plants representing
both classes show a high similarity within the same day of
acquisition but also between different days. The size of its
head determines the ripeness; however, in most images, the
canopy covers the head. The plant’s stem is centered within
the image, but depending on the plant’s growth, the center of
the cauliflower head can vary up to 20 cm from the stem.

We use the training, validation, and test set as described
in [4]. If the plant shown in an image is already harvested,
we exclude the image from the dataset. This results in a
preliminary training set of 541 images, a validation set of
196 images, and a test set of 194 images. We apply standard
augmentations like flipping and rotation on the training data.
For images of class Not ready, we apply augmentations
50% more often than for images of class Ready to get a
more balanced data distribution. After data augmentation, the
training set contains 6224 images, 2432 of class Not ready,
and 3792 images of class Ready.

For each image, we compute corresponding saliency maps.
The datasets result in pairs of image and map. Thus, all target
information of the images is also valid for the corresponding
saliency maps.

C. Classification

We use a ResNet18 [3] architecture with cross-entropy loss,
softmax activation, and two classes as output. We compute
the model over 25 epochs and use an Adam optimizer with a
weight decay of 0.0001. The learning rate starts at 0.0001 and
is reduced with a learning rate scheduler with a step size of
5 and factor γ of 0.1.

D. Saliency Maps

Saliency maps aim to explain a model’s decision by
identifying important regions in the image. In our case,
saliency maps highlight which image regions are important
for predicting the classes Ready and Not ready, allowing
conclusions about the reliability using the prior knowledge
that the center of the image is important for the decision
and the background should not play a role in the harvest-
readiness estimation. We consider three well-established local
approaches, as baseline approaches for saliency mapping,
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namely a gradient-based approach, Grad-CAM, and two
permutation-based approaches, OSM and LIME, where LIME
differs in that it uses surrogate modeling, as our focus is not
on the used methods.

Grad-CAM is a gradient-based model-specific method
developed by Selveraju et al. [13] that uses gradient
information to determine from which image regions the
convolutional layer takes the information for prediction. The
resulting map depends on the employed layer, where we
follow the suggestions of Selveraju et al. [13] to use the last
convolutional layer as it highlights object-level regions in the
image, which are also easier to interpret. Grad-CAM provides
information about the class of interest but no information about
other classes.

The second approach, OSM, is a perturbation-based model-
agnostic method developed by Zeiler and Fergus [15]. This
method evaluates sensitivity toward occlusion. It uses a sliding
window approach with patchsize p and stride s to permute the
input by masking patches and, thus, determine the influence
of the occlusion on the predicted model score. A blue pixel
in the map indicates that the score after occlusion is lower
than the original score, i.e., this pixel indicates the presence
of the examined class. A red pixel indicates that the score
after occlusion is higher than the original score, indicating a
different class. Note that the smaller s, the finer the map’s
resolution. In our experiments, we chose s = 2 and p = 11.

Like OSM, the third approach, LIME, is a perturbation-
based model-agnostic method developed by Ribeiro et al. [10].
LIME perturbs the input and computes the prediction for these
perturbed samples with the original model. Perturbation is
applied by changing components in images that are meaningful
to humans, such as superpixels. After perturbation, a local
surrogate model is learned using the perturbed samples. In our
work, we use a least squares linear regression model.

E. Spectral Clustering

We follow the idea of Lapuschkin et al. [7] using SC
introduced by Ng et al. [9] to cluster the resulting saliency
maps, which provides a better understanding of the model
decision by taking into account image features other than
RGB. SC involves clustering data based on a similarity
measure derived from a new representation of the data.
As similarity, we chose Gaussian similarity function with a
kernel scale of 0.2 based on the Euclidean distance. Before
we apply SC on our saliency maps, we perform principal
component analysis on the vectorized data to reduce the
dimensions of the data from 65 536 to 50. We decided on a
dimension of 50 to obtain 95% of the variance because there
is no unique eigenvalue difference, i.e., successive eigenvalues
have no significant difference. We apply SC to the validation
set and assign the closest cluster IDs to test data using kNN
with k = 5. For our approach, we set the number of clusters
q = 8 to be representative and generalizable to other datasets.

F. Evaluation Metrics

To evaluate the adjustment step, the summed percentage of
FP and FN is considered in the calculated clusters q. We define

Fig. 2. Resulting saliency maps or the used approaches (b) Grad-CAM,
(c) OSM, and (d) LIME for a (a) RGB input image which is visualized in
the maps’ background.

rq = 1 − (FPq + FNq ) as reliability score. The higher the
reliability score the more reliable a prediction is in a specific
cluster. If rq falls below a threshold t in cluster q of the
validation set, we swap the predicted class for all samples
in cluster q and update the confusion matrix. We choose
t = 25% based on a significant improvement in the validation
set’s accuracy. Threshold t is variable and selectable based on
experience. Based on the updated confusion matrix, we adjust
the overall and average class accuracy. We store the identified
clusters for swapping and apply the same to the test data,
followed by updating the test confusion matrix and accuracies.

III. RESULTS AND DISCUSSION

We run our experiments on an AMD EPYC 7742
64-Core processor and an NVIDIA A100 for PCIe graphic
card with 40 GB hBM2 RAM.

A. General Discussion

Our experiments find that clusters and harvest-readiness
classes do not correlate. This is expected in the case of
binary decision-making, where both classes may end up in
the same cluster since they ideally use the same features.
Instead, we focus on whether data within a cluster are correctly
classified or not, which allows conclusions to be drawn about
the reliability of the result. We use the confusion matrix for
analysis. To assist the farmer in making harvesting decisions,
we exploit the fact that the saliency maps of plant images end
up in clusters whose classification result is primarily on the
main diagonal of the confusion matrix (TP or TN) and maps
that are associated with incorrect classification results (FP or
FN) tend to end up in separate clusters.

B. Classification of Harvest-Readiness

On the validation set, we achieve an overall accuracy
of 76.32% and an average class accuracy of 77.21%. For
inference, we achieve an overall accuracy in classification of
72.41% and an average class accuracy of 73.08%. That means
we are able to predict the harvest-readiness of approx. 3 out
of 4 plants correctly.

C. Local Analysis: Saliency Maps of Single Sample Inputs

In some of the resulting Grad-CAM maps, a hotspot near
the center is highlighted in the image as shown in Fig. 2(b).
In other maps, the highlighted regions are located near the
edges or scattered in the image. It is easy to analyze which
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regions have an influence on the model’s decisions since
compact regions are highlighted.

A considerable amount of the OSM results resemble noise
regardless of stride and patchsize for occlusion. Only a minor
portion of the results show larger connected regions that are
important for decision, as shown in Fig. 2(c). These are
located in the area of the image that shows, among other
things, the hidden cauliflower head or highlighted leaf regions.
Many maps show several smaller highlighted regions which
are difficult to explain because they do not indicate a unique
plant trait. The ability of a simple explanation of the results
varies more than for Grad-CAM.

In LIME maps, we see that the computed superpixels are not
able to summarize pixels to semantically meaningful regions.
This could be caused by the structure or the strong overlap
of neighboring plants. Due to this, LIME saliency maps are
difficult to connect to general statements about the reliability
of classification outputs. An example of a sample analyzed by
LIME is shown in Fig. 2(d). We consider LIME not suitable
for our application.

Based on the assessment of single saliency maps,
we consider Grad-CAM and OSM to be the most suitable
approaches in our framework.

D. Global Analysis: Clustering of Saliency Maps and
Reliability Derivation

Fig. 3 show the absolute number of Grad-CAM map
assignments of the clustering results for eight clusters.
A distinction is made between the validation and test set.
The confusion matrix entries are differentiated by color.
Our experiments have shown that eight clusters produce
a good separability between false and correct predictions.
Furthermore, depending on the amount of data, there are
enough data points per cluster to make a reliable statement.
Based on the distribution of validation data in Fig. 3(a),
it becomes evident that cluster 5 contains about 95% false
predictions, which are equally divided between FP and FN.
This means that over 70% of all FN and FP belong to
cluster 5. The cluster with the second highest proportion
of false predictions is cluster 6. It is worth mentioning
that the percentage is only 30%, which corresponds to only
six images. The other clusters contain less than 20% false
predictions. The clustering analysis allows saying with high
confidence that samples assigned to cluster 5 are equivalent
to a false prediction and should be adjusted. The reliability
of the classification results of the saliency maps assigned to
this cluster is, therefore, low and should be disseminated to
the farmer. This is underlined in particular by the cluster
assignments of the test data [Fig. 3(b)]. We observe that 80%
of the false predicted test data are assigned to cluster 5.
The proportion of false predictions in the other clusters is
comparable to those within the validation data.

The prototypes of Grad-CAM are shown in Fig. 4. Half of
the prototypes (2, 3, 7, 8) highlight the region in the center
of the image. This is the location in the RGB input images of
cauliflower heads covered by leaves, which are the indicators
of cauliflower harvest-readiness. Even though the cauliflower

Fig. 3. Clustering of Grad-CAM results. Absolute number of (a) validation
(val) images and (b) test images per cluster.

Fig. 4. Grad-CAM prototypes computed by mean saliency map per
cluster (1)–(8).

head is not directly visible in the images, the model identifies
the center of the plant as an essential feature for the classifier
to determine the harvest-readiness. The interpretation of the
classification results is straightforward and understandable for
these clusters. The previously noticed cluster 5 also varies
in this representation to the other clusters. In the image
data assigned to the cluster, the classification model finds
no distinctive features for determining the harvest-readiness.
The visualization of the prototypes thus supports the model’s
reliability in addition to the cluster assignment since the visual
representation is easier for the user to understand and interpret.

The clustering of the OSM maps shows a uniform
distribution of false predictions in all clusters [Fig. 5(a)]. The
percentage ranges from 10% to 30%. Based on the OSM clus-
ter results, no statement can be made about the reliability of the
results. The probability that a false prediction occurs in one of
the clusters is similar for all clusters. The cluster assignment
of the test data shows a similar distribution [Fig. 5(b)]. Only
cluster 7 stands out. It should be noted that the assignment to
this cluster corresponds to a single image only.

The prototypes also suggest no clear trend in terms of
what the model uses as an informative feature in the RGB
images (Fig. 6). Clusters 1 and 5 show a hotspot near the
center, which, just like Grad-CAM, suggests that the model
is paying partial attention to the canopy covering the head.
Clusters 4, 6, and 8 give a hint of this. Comparing the
prototypes of the OSM approach with those of the Grad-
CAM approach, we see that for our scenario, the Grad-CAM
approach results in more interpretable maps than the ones of
OSM. Since no clear differentiation between false and correct
prediction can be made in the data for OSM, the adjustment
step introduced in this work is only applied to the Grad-
CAM results. Adjusting the classification results based on the
clustering results would worsen rather than improve the model
results.

In summary, the combination of saliency map analysis
and clustering provides information about the reliability of
classification results. Nevertheless, some thought should be
given to the saliency mapping approach to be used.
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Fig. 5. Clustering of OSM results. Absolute number of (a) validation (val)
images and (b) test images per cluster.

Fig. 6. OSM prototypes computed by mean saliency map per cluster (1)–(8).

E. Adjustment of Model Predictions

With regard to applying the adjustment step to Grad-
CAM maps as explained in Section II-F, we achieve a
13.99% improvement in overall accuracy to 90.31% and a
13.39% improvement in average class accuracy to 90.60% for
classification on the validation set. For inference, we achieve
a 15.73% improvement in overall accuracy to 88.14% and a
15.44% improvement in average class accuracy to 88.52%.

IV. CONCLUSION AND FUTURE DIRECTIONS

This work proposes a framework to derive a reliability score
for cauliflower harvest-readiness estimations that operates
post-hoc during inference time without the need for human
interaction. Our work combines a ResNet18 classification
model with an unsupervised SC approach of saliency maps to
derive a reliability score for classification predictions. Since
the reliability value is in a fixed range between 0 and 1, it is
intuitive and can be provided to the farmer as a decision
support. In addition, the classification predictions can be
adjusted, and the accuracy can be improved. We compare three
saliency mapping approaches: Grad-CAM, OSM, and LIMEs.
Grad-CAM proves to be the most useful in our scenario.

For our use case, our approach enables the correct harvest-
readiness estimation on GrowliFlowerR, a subset of the
GrowliFlower dataset, of approx. 4 out of 5 cauliflowers
compared to the state-of-the-art approach ResNet18 which
achieves only approx. 3 out of 4 correct predictions.
Our framework offers the advantage of not requiring any

interaction with the training process and it can be applied
to already trained models without accessing or modifying the
model architecture. We provide interpretable visualizations and
a reliability score for the model’s decision. Since we only
consider false predictions in our framework, the approach can
also be used for reliability dissemination in multiclass tasks.
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