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Abstract

In this paper, we present GrowliFlower, a georeferenced, image‐based unmanned aerial

vehicle time‐series dataset of two monitored cauliflower fields (0.39 and 0.60 ha)

acquired in 2 years, 2020 and 2021. The proposed dataset contains RGB and

multispectral orthophotos with coordinates of approximately 14,000 individual

cauliflower plants. The coordinates enable the extraction of complete and incomplete

time‐series of image patches showing individual plants. The dataset contains the

collected phenotypic traits of 740 plants, including the developmental stage and plant

and cauliflower size. The harvestable product is completely covered by leaves, thus,

plant IDs and coordinates are provided to extract image pairs of plants pre‐ and post‐

defoliation. In addition, to facilitate classification, detection, segmentation, instance

segmentation, and other similar computer vision tasks, the proposed dataset contains

pixel‐accurate leaf and plant instance segmentations, as well as stem annotations. The

proposed dataset was created to facilitate the development and evaluation of various

machine‐learning approaches. It focuses on the analysis of growth and development of

cauliflower and the derivation of phenotypic traits to advance automation in agriculture.

Two baseline results of instance segmentation tasks at the plant and leaf level based on

labeled instance segmentation data are presented. The complete GrowliFlower dataset

is publicly available (http://rs.ipb.uni-bonn.de/data/growliflower/).
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1 | INTRODUCTION

Field‐grown crops are strongly affected by environmental conditions,

thus, to minimize yield losses due to abiotic or biotic stresses,

crop production involves careful plant management and complex

decisions. Farmers support plant growth and development through

irrigation, fertilization, weeding, and pesticides applications; however,

these are costly and labor‐intensive processes. To optimize plant

management and support effective decision‐making, farmers rely on

frequent crop monitoring; however, this is also time‐consuming
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process that requires expert knowledge. Typically, farmers and

agricultural advisors monitor fields regularly via spot checks of

individual plants. Here, remote sensing and analysis methods can help

farmers monitor entire fields more comprehensively (Chi et al., 2016;

Weiss et al., 2020), and remote sensing data can be acquired at any

scale without damaging or impacting the crops. Large‐scale observa-

tions from satellites or aircraft and medium‐scale observations from

unmanned aerial vehicles (UAVs) provide an overview of larger

agricultural areas (Lillesand et al., 2015). Large‐area sensor‐based

crop monitoring makes it possible to detect heterogeneity in the field

and support the farmer's decision‐making in terms of field manage-

ment. With such detailed, area‐wide information on biotic and abiotic

stress, these factors can be counteracted more selectively to support

environmentally friendly plant management. Medium‐scale and

close‐range observations acquired from UAVs and ground robots

are beneficial for collecting detailed information and can be used

particularly well for phenotyping individual plants. For example, Nock

et al. (2016) used optical remote sensing data to define various traits,

for example, structural and phenotypical characteristics at all levels,

from individual plants to large areas. Other applications using remote

sensing data include yield estimation (Chaparro et al., 2018), yield

forecasting (Mosleh et al., 2015), and monitoring rapid land surface

changes (Verger et al., 2014).

Machine learning (ML) methods have become increasingly

important (Lary et al., 2016) in processing and interpreting large

amounts of remote sensing data. ML involves learning a predictive

function that relates observations to the desired output, and trained

models can be designed flexibly relative to the type of observations

(Debolini et al., 2015; Reichstein et al., 2019). For example, using

ML techniques, plant traits can be identified using remote sensing

data (Ali et al., 2015; Verrelst, 2019). A main area of application is

plant phenotyping, which can be made more objective and

automated using advanced ML methods, for example, deep neural

networks. For example, Romera‐Paredes and Torr (2016), Ren and

Zemel (2017), and Scharr et al. (2016) trained ML models to infer

various phenotypic traits, for example, the number of leaves per

plant. Similar traits can also be derived using a combination of object

and leaf keypoint detection, which facilitates observation of plant

growth as done by Weyler et al. (2021). Sa et al. (2016) employed

deep convolutional neural networks to detect single fruits, which

served as a precursor for subsequent autonomous harvesting (Arad

et al., 2020). Drees et al. (2021) used time‐series image data of

cauliflower and broccoli to predict field growth using conditional

generative adversarial networks (Isola et al., 2017). They generated

an image of a plant at a later time point and employed the

Mask Region‐based Convolutional Neural Network (R‐CNN; He

et al., 2017) to calculate the projected leaf area. Another typical

agricultural application is field weed control, where weeds, crops,

and soil must be distinguished accurately. Using neural networks,

promising results have already been achieved, where the task can be

approached using classification (Lottes et al., 2017), detection

(Lottes et al., 2018), or semantic segmentation (Ahmadi et al., 2021;

Milioto et al., 2018) techniques.

Benchmark datasets with annotations and in‐situ measurements

are beneficial in terms of facilitating the development of ML methods

for plant‐specific tasks using remote sensing data. Various bench-

mark datasets already exist; however, many of these datasets are

domain‐specific with highly specific objects, for example, buildings

(Roscher et al., 2020) and animals (Deng et al., 2009) or other

semantics, for example, land cover (Cordts et al., 2015). Generally,

such datasets are not suitable for plant applications. The link between

ML and plant sciences is becoming increasingly important (Lary

et al., 2016), as can be seen from the increasing number of related

publications in recent years (Ahmadi et al., 2021; Chebrolu et al., 2017;

Förster et al., 2019; Halstead et al., 2020; Kierdorf et al., 2019;

Zabawa et al., 2019). Despite increased demand, to the best of our

knowledge, only a few publicly available plant‐specific datasets are

available for ML purposes.

Among the limited number of publicly available datasets or

datasets described in the literature, many were acquired in a

greenhouse environment (Halstead et al., 2020; Minervini et al., 2016;

Mureşan & Oltean, 2018; Scharr et al., 2014) or are based on

synthetically generated data (Kierdorf et al., 2022; Ward &

Moghadam, 2018), which makes it difficult to apply them to real‐

world scenarios. In particular, the greenhouse‐grown plant Arabidop-

sis thaliana rosettes is frequently used in ML research due to its

simple rosette morphology (Scharr et al., 2014). However, the

morphologies of agricultural crop plants are more diverse, and their

development is affected by changing environmental conditions and

both abiotic and biotic stresses. Thus, agricultural datasets that

represent real‐world field conditions that also cover various

challenges, for example, occlusion, shape variability, pose variability,

the colors of plants, and plant parts, are required, such as the datasets

of Kusumam et al. (2017) and Blok et al. (2021).

Modeling the temporal development of plant growth and plant

traits is an active research area, and this requires datasets that

monitor plants over time; however, publicly available time‐series

datasets of plants are rare. One such dataset is the cauliflower

(Brassica oleracea var. botrytis) and broccoli (Brassica oleracea var.

italica) dataset from Bender et al. (2020). The data in this dataset

were acquired using a camera‐equipped robot that captured close‐

range images at several time points. However, this dataset is limited

to only a few plants and lacks semantic information and accurate

georeferencing of single plants.

Cauliflower is a suitable target crop plant to develop ML

algorithms because its cultivation, morphology, and economic value

give rise to many potential applications in the agriculture digitization

context. Cauliflower is a high‐value crop that must satisfy various

quality criteria. Thus, precise timing of plant management procedures

is required to avoid yield losses due to abiotic or biotic stress and

produce marketable cauliflowers. Cauliflower harvesting is labor‐

intensive because each cauliflower must be harvested within

approximately 1 week period in which the heads are of sufficient

size but are not yet overripe. In addition, cauliflower must be

harvested by hand due to within‐field variability in plant develop-

ment. As the head is covered by leaves, each individual cauliflower
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head must be touched to determine whether it satisfies the size

criteria. After cutting and removing the surrounding leaves, product

quality is assessed visually to dismiss heads with discolorations,

misshapes, or stress symptoms. Note that cauliflower growth is highly

dependent on climate, which makes it difficult to predict the most

beneficial harvest time. Depending on the prevailing temperature,

irradiance, and soil water availability, plants may develop rather

heterogeneously, thus, harvesting of established fields simulta-

neously can take weeks. Under favorable conditions, plants in

sequentially established fields may need to be harvested at the same

time, which requires more workers and lowers the price per

cauliflower. Early prediction of harvestable plants and harvest time

would facilitate better sales planning and provide significant

economic advantages to farmers.

Thus, in this paper, we present an agricultural dataset, introduced

as GrowliFlower, that is suitable for the development of ML

approaches. The proposed dataset is intended to address the growth

analysis and development of crop plants and the derivation of

phenotypic traits relevant for agricultural applications to promote the

development of automation in agriculture. The proposed dataset

comprises the following.

• RGB and multispectral orthophotos of two different cauliflower

fields were acquired over the entire growing period (from planting

to harvest time).

• Plant IDs and coordinates, which enables users to extract

complete and incomplete time‐series of image patches showing

individual plants accompanied with insitu reference data captured

manually on the field.

• The plant IDs and coordinates also allow users to extract image

pairs of plants pre‐ and post‐defoliation accompanied with a

time‐series of the respective plant to facilitate analysis of the

correlation between the external appearance and internal head of

the cauliflower plant.

• The proposed dataset's pixel‐accurate labeled data are useful for

plant and leaf classification, detection, segmentation, instance

segmentation, and other similar computer vision tasks.

We also present two baselines demonstrated application examples of

plant and leaf instance segmentation using the proposed dataset in a

Mask R‐CNN (He et al., 2017) application.

2 | FIELD DESIGN

Here, we describe the study area. The cauliflower fields used for data

acquisition in this study were located on a farm in Western Germany

(50°46′6.742"N, 6°58′20.271"O) close to the city of Bornheim, which

is 20 km south of Cologne (Figure 1). The mean annual temperature in

Bornheim is 14°C, and the mean annual precipitation is 383mm. This

area is dry 142 days a year with an average humidity of 81%. Note

that fertile loess soil is available on the farm.

We acquired data for two fields, that is, (1) the field shown in

blue in Figure 1 (referred to as field 1 in this paper) in 2020, and (2)

the field shown in orange (referred to as field 2 in this paper) in

2021. Note that the cauliflower plants in both fields were planted

in rows in a northwest‐to‐southeast orientation. These fields were

designed for sprayers with a working width of 18 m. Before

planting, the fields were plowed to prepare the soil. Tractors with

1.8 m track width were used to plant five rows of nursery‐grown

young cauliflower plants simultaneously, with three rows between

the tractor tracks. The distance between the rows was 0.6 m, and

F IGURE 1 Field locations. The fields are located near Cologne, Germany. Blue: field 1 (2020); orange: field 2 (2021). Map source:
Google Maps.
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the distance between the plants in a row was 0.5 m, thereby

resulting in a planting density of 33,000 plants/ha. In addition,

every 18 m, there was a 2‐m wide lane for spraying and irrigation.

The fields were subject to conventional farming practices,

including hoeing cauliflower plants before canopy closure to

reduce weeds and application of pesticides (including herbicides,

insecticides, and fungicides). The fields were also irrigated as

required using sprinklers. As a result, the abiotic and biotic stresses

were rather low in both fields, and the plants developed rather

uniformly.

2.1 | Field 1

Field 1 has a width of approximately 100m and a length of 240m.

Thus, the total area of field 1 is approximately 2.4 ha. This field was

planted with the Korlanu cultivar (Syngenta). Three‐quarters of the

field were planted using plants from seedling trays (Figure 2a) on July

28, 2020 from the southwest direction. The remaining northeastern

part of the field was planted on July 29, 2020. Note that field 1 was

generally free of weeds.

2.2 | Field 2

Field 2 field has a width of approximately 55m and a length of 210m.

Thus, the area is approximately 1.32 ha. This field was planted with

the Guideline cultivar (Syngenta). Here, the plants were transplanted

from seedling trays on June 15, 2021. Note that field 2 contains more

weeds than field 1, especially along the southwestern edge of the

field due to previous rhubarb cultivation.

3 | DATA COLLECTION

Three types of data were acquired in the data collection process,

namely:

1. RGB and multispectral UAV image data with high spatial

resolution, which is an indirect measurement of the phenotypic

development of the plants.

2. Georeferenced ground control points (GCP) to locate the data in

space, spatially arranged according to field size to ensure accurate

and robust processing of the orthophotos (Persia et al., 2020).

3. In‐situ measurements of phenotypic traits characterizing the

development state and stress factors that serve as reference

observations.

The different types of data were collected on the same day to

synchronize them. However, to ensure that workers were not visible

in the image data, data acquisition processes were not conducted at

the same time. Data acquisition was conducted once a week during

the entire growth period. During the harvest period, data were

collected once between two different harvest days and once after

the final harvest. Note that drone flights were only performed on

sunny or overcast days to ensure stable illumination for the

generation of orthophotos without shading effects due to moving

clouds. As a result, the time intervals between successive flights vary.

Figure 3 shows the data collection dates for fields 1 and 2. As seen in

the top timeline, seven orthophotos are only partly available, which is

discussed further in Section 4.1. The data collection took a few hours

per day, with the in‐situ measurements being the most time‐

intensive. In addition, data collection was adjusted to both field

conditions, resulting in adaptations to camera settings, number of

GCPs, and flight altitude. In the following subsections, we describe

the procedure followed for fields 1 and 2.

3.1 | RGB and multispectral imaging using UAVs

UAV images were captured using a DJI Matrice 600 hexacopter with

two mounted cameras (Figure 4). The first camera was a Sony A7 rIII

RGB camera with a Zeiss/Batis 2.0 lens (resolution: 47.4MP). The

focal length was 25mm with a field of view of 71. 5°. A shutter speed

of 1/1250th and a floating aperture (highest value: 2.0) were

selected. The International Organization for Standardization value

was set to automated for field 1 and changed to 50 for field 2 to align

our approach with the image‐capture settings recommended by

Agisoft. The second camera was a MicaSense RedEdge 3 for

multispectral image data. It contains five built‐in lenses (resolution:

1.2MP per band). The wavelengths of the five acquired bands and

their respective bandwidth were 475 nm (20 nm), 560 nm (20 nm),

F IGURE 2 Example field and plant images. (a) Seedling trays before planting. (b) Plants 2weeks after planting. Images (c, d) were taken
4weeks after planting and illustrate how different plants develop over. (e) Plants shortly before head formation.
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668 nm (10 nm), 717 nm (10 nm), and 840 nm (40 nm). The focal

length of the camera is 5.4 mm. For field 1, an altitude of

approximately 10m and an image overlap of 60/80 were used, and

for field 2, an altitude of approximately 16m and an image overlap of

80/80 were used to optimize the data acquisition process and

subsequent image data processing. The following factors were

considered in terms of the drone flights. For each flight, no irrigation

was permitted in or close to the flight area, the drone was flown at

temperatures and wind speeds within the device's safe operating

range, and the flights only occurred during periods of no rain.

3.1.1 | Time‐series flights

On each acquisition date, the drone was flown over a specified

area of the field once, which remained the same for the entire

growing period. For field 1, this area had a width of 91 m and a

length of 62 m, resulting in approximately 0.60 ha. For field 2, the

area had a width of 30 m and a length of 131 m, resulting in

approximately 0.39 ha.

The cauliflower plant does not necessarily grow straight, thus,

the center of the plant in later growing stages does not match the

position of the seedling exactly (Grenzdörffer, 2019). Thus, a shift of

up to ±10cm between the center position of the head and the stem

position in the early growing stages was observed.

3.1.2 | Defoliation flights

In addition to the time‐series flights, so‐called defoliation flights were

conducted. Here, the upper leaf layers covering the cauliflower head

were removed manually on individual plants after the time‐series

flight. This step is referred to as defoliation. Note that we ensured

that the defoliated leaves did not affect any neighboring plants. The

defoliated plants provided information about the development of the

head relative to the plant's outer appearance. By performing another

UAV flight after defoliation, a dataset of images showing the time‐

series of the plant's outer appearance (Figure 5b) and inner head

(Figure 5c) on the day of defoliation was acquired.

For field 1, the defoliation of plants was performed over 2 days,

that is, October 27 and 29, after harvesting occurred. Thus, the

defoliated plants represented plants whose head size did not satisfy

the harvest criteria, which generally meant that the head was too

small. For field 2, starting on August 19, when most of the cauliflower

heads started developing, between 70 and 200 plants, were

defoliated weekly. Here, all plants with developed heads were

defoliated in rectangular plot regions to minimize the impact

of defoliation on the biological growth of neighboring plants. Note

that care was taken to not defoliate the reference plants described

previously (Section 3.3). A distribution of plots for the first five

defoliation time points is shown in Figure 5a. For the final flight (after

the last harvest), most remaining plants that had not been harvested

F IGURE 3 Timelines of acquired data for (a) field 1 and (b) field 2. The colors represent the data availability for images and insitu
measurements.

F IGURE 4 DJI Matrice 600 hexacopter for unmanned aerial vehicle image‐based measurements.
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were defoliated, which resulted in random distribution. Thus, this is

not shown in Figure 5a.

3.2 | GCP points

To localize the image data globally in space, the data were

georeferenced with the help of circular 12‐bit GCPs with a diameter

of approximately 20 cm, as shown in Figure 6. Here, the GCPs were

fixed in the ground using plastic pegs, and they were distributed

evenly across the field (refer to Figure A1) and positioned on tractor

tracks or between plants to avoid displacement by external

influences, for example, plowing. In addition, surrounding plants

were removed as required to ensure the visibility of GCPs in the

image data. We used 21GCPs in field 1 (35 GCPs/ha) and 44 GCPs in

field 2 (113 GCPs/ha) (refer to Figure A1), with each GCP showing a

different pattern. The greater number of GCPs in field 2 was due to

the fact that they facilitate subsequent image alignment by ensuring

that at least three GCPs were present in each captured image,

especially for growth stages with a high degree of plant overlap and

dense canopies.

As a measuring device for GCP coordiantes, a Trimble R4‐Model

3 base station with a horizontal standard deviation of ±5mm+ 0.5

ppm RMS and vertical standard deviation of ±5mm+ 1 ppm RMS was

used for both fields. The measured coordinates were acquired in the

WGS84/UTM 32N coordinate system. To ensure that the markers

for the GCPs were not displaced due to external influences, the GCPs

were measured at the beginning and end of the data acquisition

period to omit displaced GCPs. A third measurement was added for

field 2 in the middle of the growing period.

3.3 | In‐situ measurements of plant development

In each field, so‐called reference plots were selected to capture

information from reference plants manually. For field 1, four

reference plots were assigned (Figure A2a), and each plot comprised

three rows with 20 plants each (Figure A2b). Thus, each plot

contained 60 plants, for a total of 240 plants in all reference plots.

The plots were distributed in the northwestern half of the field along

the long side. Five reference plots were assigned for field 2

(Figure 7a). Here, each plot comprised five rows of 20 plants

F IGURE 5 (a) Visual overview of defoliated plant locations for the first 5 weeks of defoliation in field 2. (b, c) Images of a plant pre‐
and post‐defoliation. The locations of random distributed defoliated plants from week six are not shown.

F IGURE 6 Two ground control point patterns used for
acquisition.
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(Figure 7c; 100 plants/plot, 500 plants in total). The plots were

distributed evenly in the southwestern half of the field along the long

side. Thus, the reference data were collected along the entire field.

Each reference plant was assigned a specific plant ID identifying the

row (field 1: A–C; field 2: A–E) and plant number (Field 1: 1–10,

90–99; Field 2: 1–20).

The following measurements were taken for all reference plants

in field 1.

1. Phenological development after BBCH‐scale (Biologische Bunde-

sanstalt für Land‐ und Forstwirtschaft, Bundessortenamt und

CHemische Industrie)/Feller et al. (1995),

2. height,

3. maximum diameter,

4. other remarks, for example, stress infestation (listed in the

attachment in Table A1),

5. head diameter,

6. harvesting status.

Note that the farmer followed a rigorous plant protection schedule,

and very few stresses were detected in 2020; thus, information about

stresses was not recorded explicitly in 2021. Due to the observed

homogeneous development, focus was placed on measurements of

BBCH and the height of five representative plants per plot. Here, the

head diameter and harvest status were recorded for individual plants.

4 | DATASET

The core component of the dataset (Figure 8) comprises both RGB

and multispectral orthophotos derived from the captured UAV

images. In the orthophotos, single plants are identifiable by their

corresponding coordinates and plant IDs. The dataset contains

four subsets intended for different ML tasks. The instance

segmentation GrowliFlowerL subset contains patches extracted

and processed from the RGB orthophotos, and the remaining three

subsets contain time‐series data of individual plants. The Growli-

FlowerT subset comprises randomly selected time‐series data

representing a wide variety of cauliflower development. In

addition to the time‐series data, the GrowliFlowerD subset also

contains image pairs of plants before and after defoliation. The

GrowliFlowerR subset contains the insitu measurements and the

time‐series data. For each field, a text file containing the measured

GCP coordinates at the beginning and the end of field monitoring

is provided. For field 2, the coordinates measured during the

growing period are also given.

4.1 | Orthophotos (GrowliFlowerO and
GrowliFlowerM)

The acquired RGB and multispectral UAV images were aligned to

orthophotos using the Agisoft Metashape Professional software to

obtain a large‐scale overview of the monitored fields. Here, the

orthophotos were georeferenced according to the measured GCP

coordinates. In addition, the individual orthophotos were exported in

the WGS84/UTM 32 coordinate system.

The ground resolution for the RGB orthophotos of field 1 is

1.65 mm/px for the pixel width and height with a minimum and

maximum file size of 1.64 and 6.7 GB, respectively. The ground

resolution for field 2 is 3.10 mm/px for the pixel width and height

with a minimum and maximum file size of 1.3 and 5.0 GB,

respectively. Twelve orthophotos are available for field 1, where

five are entirely processed, and seven contain data gaps for small

areas where the quality of the UAV‐acquired images was

insufficient. For field 2, 15 orthophotos are available, as shown

in Figure 3b. This set of orthophotos is provided in the

GrowliFlowerO subset of the proposed dataset. In addition, the

F IGURE 7 Visual overview of (a) reference plots for in‐situ measurements in field 2 and (b) the design of reference plot 5 (including
reference plants and the ordering of reference plant numbers). The plot design is valid for all reference plots in field 2.
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dataset contains multispectral orthophotos for field 2 with a

ground resolution of 2.5 cm/px width and length, denoted as the

GrowliFlowerM subset.

4.2 | RGB image patches

In this section, we describe the data extracted from the RGB

orthophotos. Note that the ground resolution of the resulting

image patches is the same as that of the respective orthophotos.

Each of the following datasets (excluding the labeled dataset

described in Section 4.2.1) contains a text file with global

information for each field, containing the image ID, including the

plant ID, and corresponding georeferenced UTM coordinates of

the plants. Note that the coordinates identify the center of the

plants as observed on August 19 for field 1 and July 7 for field 2.

In addition, information about the planting day and a proposed

assignment as a training, validation, or testing subset are provided

as a basis to compare ML methods. To minimize spatial correlation

between sets, the proposed training, validation, and testing

subsets are spatially disjoint. However, certain systematic factors

from a biological perspective are not excluded. The use of these

sets is expected to promote the development of ML methods with

high generalizability. For the reference data discussed in

Section 4.2.3, the harvesting time is specified, and for the

defoliation data discussed in Section 4.2.4, the defoliation date

of the plants is specified. In addition, text files with local

information for each acquisition date are provided, including the

image ID to connect the local information with the global

information, and the corresponding local pixel coordinate relative

to the respective orthophoto for each data acquisition day. Also

note that information about the day after planting (dap) is included.

To use image patches showing single plants, the patches must

be extracted from the orthophotos using the plant IDs and

coordinates. Here, an image side length and width of at least

490 px for field 1 and at least 256 px for field 2 is recommended to

ensure that the entire plant is captured in the image patch

regardless of the plant developmental stage.

F IGURE 8 Overview of data in proposed GrowliFlower dataset.
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4.2.1 | Labeled image patches (GrowliFlowerL)

This subset, called GrowliFlowerL, comprises pixelwise, manually

annotated images, thus, it is well‐suited for classification, semantic

segmentation, detection, instance segmentation, or stem detection

tasks. For this subset, the image patches of four acquisition dates

for field 1 are extracted using a sliding window approach. The

image patches have a size of 368px × 448px. Here, the size of the

patches differs from that of the proposed sizes because only plants

from earlier development stages are included. In addition, in this

dataset, the focus is not on individual plants but on the variability

between images, thus, the plants are not located in the center of

the patch.

For each RGB image patch, four annotated masks are provided.

These annotated masks contain segmentations of (1) plant instances,

(2) leaf instances, (3) void segmentations, and (4) stem positions.

(1) The plant instance mask segments the image in soil and plant

pixels with instance information for the plants.

(2) The leaf instance mask segments the plants into single leaves.

Note that plants at image borders for which no stem or only

one‐quarter of the plant is visible are annotated as void and no

leaf annotation is applied.

(3) The void segmentation mask is a binary mask where plants

located at image borders where no stem is visible are segmented

as void. In addition, plants with only a small amount of visible leaf

material in the RGB image are also segmented as void.

(4) The stem annotation mask represents the position of the stems

of nonvoid plants.

Examples of (1) plant instance masks, (2) leaf instance masks, and

(3) void segmentation masks are shown in Figure 9. Two things to

note are that weed is not labeled as a plant but as a background and

that stem positions are only represented by individual pixels, thus,

they are difficult to recognize visually. Therefore, masks that include

stem information are not shown in these examples. The annota-

tions are provided with a defined name based on the name of the

RGB image patch. Here, each patch contains a maximum of four

plants, and there is a number of patches in the dataset that contain

no plants (Table 1). This subset is divided into training, validation,

and testing sets, and the complete labeled subset is denoted

GrowliFlowerL.

F IGURE 9 Examples of labeled images for different time points. Column 1 shows that the RGB base for columns 2–4 illustrates
corresponding labeled plant instance masks, leaf instance masks, and void segmentation masks. The rows represent different points in
time. Dark blue represents the background class, and the other colors represent different (leaf) instances.
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4.2.2 | Time‐series for plant data (GrowliFlowerT)

For each field, the plant coordinates are provided to allow users to

extract time‐series plant images. This data is denoted GrowliFlowerT.

The time‐series data of field 1 comprise the early plant developmen-

tal stages and the harvest dates, but lack dates, when the canopy

around the cauliflower head was closed. The time‐series data of field

2 comprise all growth stages.

For field 1, the coordinates for approximately one‐third of the

plants are determined (3804 plants in total). The distribution of the

location of the extracted data is visualized in Figure A3a. The selected

plants are distributed along the southeastern edge of the field due to

the availability of data for most time points and the ability to

determine the harvest window of individual plants. The subset is

divided into training, validation, and testing sets, as shown in

Figure A3a. In addition, cauliflower planted on July 28 or July 29 is

included in all three sets to ensure that the variability within the

sets is guaranteed. Note that the orthophotos do not overlap

entirely; thus, image data are not available for all plants at all times,

which results in temporally incomplete time‐series data. For field 2,

8736 plant coordinates were extracted and distributed evenly over

the field. The subset is divided into training, validation, and testing

sets, as shown in Figure A3b. Here, all plant coordinates are provided

as georeferenced UTM coordinates.

To use individual plant images, the user must crop the patches

around the local plant coordinates determined in the subset. In

addition to all global plant coordinates, this subset contains the local

coordinates of the patches for each acquisition date, which at a size

of 490px × 490px for field 1 and 256px × 256px for field 2 lie

completely within the orthophoto and are not showing spatial data

gaps, as patches shown in Figure 12b. Five examples of the time‐

series data are shown in Figure 10 for field 1, and four examples are

shown in Figure 11 for field 2. Due to the spatial data gaps, the

number of coordinates per date for field 1 varies, which leads to

temporal gaps in the time‐series data. The largest set of time‐series

that includes equal time steps consists of 3611 time‐series based on

eight time points, including the five time points up to day after

planting 42 (September 8), and all three time points from day after

planting 91 (October 27). In addition to the file that contains all UTM

coordinates, a text file containing the UTM coordinates for this set is

also provided; thus, the user can extract the time‐series data for the

selected plant IDs. After removing the patches with spatial data gaps,

we retained 8348 complete time‐series images for field 2. Due to the

heterogeneous weed occurrence in field 2, the patches contain

different amounts of weed, as shown in Figure 12a. Due to the given

UTM coordinates, it is possible to extract the complete time‐series

set of local coordinates for both fields if required.

F IGURE 10 Time‐series illustration of five different plants in GrowliFlowerT subset in field 1. All rows represent time‐series of plants
containing temporal data gaps due to the poor image quality of the corresponding UAV images (indicated by omitted images). The columns
represent the recording days and show the five representative plants captured at the same time on that day. UAV, unmanned aerial vehicle.

TABLE 1 Overview of distribution of labeled images acquired on
different dates.

Definition
All
images

Images with plants
Images without
plants

[Train/Val/Test] [Train/Val/Test]

2020_08_12 844 745 [521/

110/112]

99 [71/15/15]

2020_08_19 892 781 [547/

117/117]

111 [78/16/17]

2020_08_25 383 367 [257/55/55] 16 [12/2/2]

2020_09_08 79 79 [56/11/12] 0 [0/0/0]
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4.2.3 | Time‐series for reference plant data
(GrowliFlowerR)

For each field, the subset includes the plant IDs and coordinates,

which allows the user to extract an image time‐series set of

monitored reference plants that appear similar to those described

in Section 4.2.2. The time‐series data for field 1 comprise the early

plant developmental stages and the harvest dates, but lack dates,

when the canopy was closed. The time‐series data for field 2

comprise all growth stages (see Figure 11). Table 2 shows the

distribution of available plant IDs and the number of images of plants

per time point for field 1. Note that the pre‐defoliation orthophotos

of October 27 and October 29 do not overlap the reference plots due

to the low quality of the corresponding UAV images. Here, the

reference plants were not defoliated, thus, the orthophotos of

defoliation flights are used to extract images of these days to acquire

a reference time‐series. For field 2, all local coordinates are given for

all acquisition dates, which allows the user to extract complete image

time‐series. Here, the data are divided into training, validation, and

testing set for both fields. In addition, the plants in each plot are

presented in each set. The visual distribution for both fields is shown

in Figure A4.

4.2.4 | Time‐series for defoliated plant data
(GrowliFlowerD)

For field 1, the GrowliFlowerD subset contains a total of 130 plant IDs

and coordinates for defoliated plants (30 for October 27 and 100 for

October 29). For field 2, the subset contains a total of 717 plant IDs and

coordinates for defoliated plants. The coordinates allow the user to

extract the time‐series of defoliated plants. Table 3 presents an overview

of how many plants were defoliated on different acquisition days. In

addition to the time‐series data, pairs of pre‐ and post‐defoliation images

F IGURE 11 Four plant time‐series from field 2. A row represents a time‐series. The columns represent the acquisition dates.

F IGURE 12 Data gaps and different amounts of weed occurrences in image data during different stages of growth. (a) Different amounts of
weed occurrence on the acquisition date of August 11 and (b) data gap occurrence.

TABLE 2 Number of reference plant image patches per acquisition date for field 1 (2020).

Date Aug 12 Aug 19 Aug 25 Sept 2 Sept 8 Sept 17 Sept 22 Oct 06 Oct 19

# images 239 239 239 239 239 239 – – 193

Date Oct 27 (Post) Oct 29 (Post) Nov 2

# images 119 119 12

TABLE 3 Number of defoliated plants per acquisition date for
field 2 (2021).

Date Aug 19 Aug 23 Aug 25 Aug 30 Sept 3 Sept 8

# images 110 115 251 116 71 54

KIERDORF ET AL. | 183

 15564967, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rob.22122 by U

niversitäts-U
 L

andesbibliothek B
onn, W

iley O
nline L

ibrary on [19/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



are provided in the subset. The data are divided into training, validation,

and testing sets for both fields, and each defoliation day is presented in

each set. The visual distribution of both fields is shown in Figure A5.

4.3 | Insitu data

Two CSV files are provided, that is, one for each field, and these files

contain the plant ID and the measurements described in Section 3.3

for each data acquisition day. The measured values correlate with the

images in the GrowliFlowerR subset. Figure 13 shows the distribution

of the number of harvested plants in the reference plots per

acquisition date for fields 1 and 2.

5 | BASELINE FOR INSTANCE
SEGMENTATION APPLICATION

5.1 | Experimental setup

We describe two possible applications of the proposed dataset by

creating baselines using the labeled GrowliFlowerL subset and

the Mask R‐CNN (He et al., 2017), which is a state‐of‐the‐art

instance segmentation method. We use the pytorch implementa-

tion available at https://pytorch.org/tutorials/intermediate/

torchvision_tutorial.html.

We consider plant instance and leaf instance segmentation

tasks. Thus, we use the mask and bounding boxes derived from

the plant instance mask as the target for the first baseline. The

mask and bounding box derived from the leaf instance mask

are used as the target for the second baseline. For the leaf

instance segmentation baseline, the given void instances are used

as the background because only leaves that do not belong to void

plants are labeled. Note that the estimation of semantic masks for

individual instances enables the derivation of phenotypic traits.

Here, we applied a random horizontal flipping data augmentation

technique with a probability of 0.5.

We trained the Mask R‐CNN on a computer with Intel Core

i7‐6850K 3.60 GHz processor and a GeForce GTX 1080Ti GPU

with 11 GB RAM. The network was pretrained on the COCO

dataset (Lin et al., 2014), and training was performed over 100

epochs with a learning rate of 0.001 and batch size of 2. We used

a stochastic gradient descent optimizer, and ResNet‐50 was used

as the backbone network.

F IGURE 13 Overview of harvested and nonharvested plants per reference plot per day.
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5.2 | Evaluation metrics

The first evaluation metric is the Intersection over Union (IoU), which

is calculated as follows:

Area of Intersection

Area of Union
IoU= =

TP

TP + FP + FN
, (1)

following the evaluation metrics of the COCO dataset (Lin

et al., 2014), where TP represents true positives, FP represents false

positives, and FN represents false negatives. We also consider two

additional metrics, that is, precision p and recall r , which are defined

as follows.

p r=
TP

TP + FP
, =

TP

TP + FN
. (2)

The F1 score summarizes and balances precision and recall by

calculating a harmonic mean. The F1 score is defined as follows.

⋅ ⋅p r

p r
F1 =

2

+
. (3)

We compute precision, recall, and F1 score relative to the single

object class cauliflower plant and calculate the scores for the IoU

thresholds t = 0.50IoU and t = 0.75IoU . In addition, we determine the

average precision (AP), average recall (AR), and average F1 (AF1)

scores over all IoUs in the interval 0.50 − 0.95with a step size of 0.05

as for the COCO benchmark. This is indicated by ⋅( )@0.5 − 0.95. For

the leaf instance segmentation baseline, we reduce the evaluation on

recall, as we do not want to penalize predictions on void pixels. The

consequence of penalizing predictions on void pixels would be to

penalize the model for identifying leaves that were simply not labeled

as such.

5.3 | Results

We calculate the metrics relative to the detected bounding boxes and

the segmented masks of the respective objects. The segmented

masks provide information about the cumulative number of correctly

classified pixels and thus, the more accurate shape of the object. The

bounding box enables derivation of the detection accuracy and thus,

the localization of the object.

Table 4 summarizes the results of the plant instance segmenta-

tion task for the baseline method. As can be seen, 95% at IoU≥0.5 are

predicted correctly. In addition, precision at the bounding box and

pixel levels are greater than 80% for all IoU thresholds ≤0.8

(Figure 14a). At an IoU value of ≥0.85, precision decreased rapidly.

This trend is also observed for both recall (Figure 14b) and the F1

score (Figure 14c). For higher IoU values, we found that prediction at

the pixel level is less accurate than at the bounding box level because

slight changes in segmentation generally result in more errors in the

segmentation mask than in the bounding box (Figure 15). An

overview of the results is given in Table 4.

We found that many objects and masks are estimated accurately

(Figure 16a). The results show all predictions with a confidence score

greater than a threshold of 50%. Precise contours are estimated, and

in the earlier development stages, the instances are well separated

spatially. Note that the model does not predict the ground as an

object in any case. In addition, smaller weeds that can be seen in

some patches are also not considered objects, which is desirable,

because in this way we identify that the model distinguishes

cauliflower from weeds. We found that inaccuracies occur with

plants that lie at the edge of the image patches. In such cases, only

small parts of the plant are visible, thus, the leaves are not adjacent to

each other, as shown in Figure 16b (top left and bottom left). We also

found that errors occur in later developmental stages because the

plants overlap (Figure 16b bottom right), which represents a more

challenging scenario than well‐separated plants. In particular, for

overlapping plants, it is even difficult for the human eye to assign

leaves to individual instances. In addition, compared with the earlier

stages of development where no overlap occurs, fewer training

images were available for the later stage of development. The small

number of images means that less variability in the data is captured,

making prediction on new unknown data more difficult.

Another distinctive feature involves plant objects from which

leaves fall or plants that are impaired in their growth and thus decay.

In such cases, it is difficult for the model to distinguish whether one

or more plants are represented (Figure 16b top right).

For the leaf instance segmentation task, which is a more difficult

task compared with plant instance segmentation, we achieve a very

good recall result of 74% at the bounding box level and 77% at the

pixel level. The distinction between individual leaf instances is more

complex than the distinction between plant instances. In addition,

here, we assign the void‐labeled objects to the background class

for this baseline rather than the leaf class because individual void

plants can contain several leaves, however, such leaves were not

labeled individually. Note that the calculated values for recall are

similar both the pixel and bounding box levels.

We can find explanations for the recall values in the visual

consideration of the results, even though these results show

predictions with a confidence score greater than a threshold of

TABLE 4 Plant instance segmentation
results: precision, recall, and F1 score for
predicted bounding boxes (BBox) and
segmentation masks (pixel) for the class
plant

Global metrics Precision Recall F1
Evaluation AP AR AF1 P@0.5 P@0.75 R@0.5 R@0.75 F1@0.5 F1@0.75

BBox 0.917 0.933 0.843 0.952 0.899 0.965 0.913 0.958 0.906

Pixel 0.844 0.858 0.770 0.954 0.902 0.963 0.913 0.959 0.908

Abbreviations: AP, average precision; AR, average recall; AF1, average F1.
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50%. By defining void instances as the background, the model is

challenged to predict the leaves belonging to void instances not

as leaf objects, as shown in Figure 16d (top left and bottom left).

It is difficult for the model to distinguish whether plants at the

edge of the patches are void instances or leaf instances. Thus,

either leaves are predicted that are not in fact present in the

target (representing low precision) or no leaves are predicted

even they are present in the target (representing low recall). For

plants that are completely visible in the patch, the model

demonstrates better prediction performance. Another source of

error is the prediction of several instances on a single leaf, as

shown in Figure 16d (top right and bottom right) because the

model is required to learn various features, for example, leaf

structure and size, because such features play a crucial role in

distinguishing different leaves.

To sum up, we observe that our instance segmentations, plant

instance as well as leaf instance, perform and can be used for

different growth stages of the cauliflower plants.

6 | REFLECTION AND DISCUSSION

The results of this study provide insight into the acquisition of image

time‐series under field conditions. We observe that the flight altitude

of the UAV must be adjusted depending on the characteristics and

the height of the cultivated plants to capture images with high quality

in terms of resolution and gapless spatial data. However, to obtain

accurate image data, enough keypoints must be distributed in the

field. Our work shows that GCPs are suitable as keypoints because

they help align and georeference the orthophotos more accurately.

For simplified use of the data for ML approaches, the data should

have similar characteristics as exposure over time. For this purpose,

data must be recorded under consistent weather conditions.

However, we note that combining consistent conditions and similar

interval lengths between acquisition days is a challenging task.

While previous research, such as the work of Bender et al.

(2020), focuses on collecting data from many different data sources

(e.g., imagery, climate, and soil data), monitoring a large number of

F IGURE 14 Representation of (a) precision, (b) recall, and (c) F1 score for class cauliflower plant. The graphs show the evaluation at
different IoU thresholds on the bounding box (BBox), thus object (solid‐line), and pixel (dashed‐line) level.

F IGURE 15 Recall results for leaf instance segmentation task. (a) Evaluation at different Intersection over Union (IoU) thresholds on the
bounding box (BBox), that is, object (solid‐line), and pixel (dashed‐line) level. (b) shows the respective average recall (AR), R@0.5, and R@0.75

values.
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different instances that are specifically needed for training DL

methods has not been considered sufficiently. In our work, we

provide a large image number of different instances but we lack

additional data, such as soil and climate data. Climate and soil

characteristics are important factors to determine or predict plant

growth. ML methods only learn features that are present in the

training data. Thus, if external factors such as climate and soil change,

the growth of plants is influenced as well. The lack of this information

can cause ML models to be prone to error in their results when

applied to new data. Therefore, we suggest improving the data

acquisition by capturing additional soil and climate data. Another

suggestion for improvement of data acquisition is the field design. To

avoid systematic effects in the data, reference plots and other

selected areas like defoliation plots should be distributed equally

within the field, because it is difficult at the beginning of data

collection to predict how much which plants (crops and weeds) will

grow and how the location will affect growth and thus, the

acquired data.

Regarding our baseline experiment considering instance segmen-

tation, we observe that the application shows satisfactory results on

our data. To improve the results, future studies could integrate prior

knowledge about the shape and structure of plants and leaves.

Weyler et al. (2022) show an example of how to improve the results

for plant and leaf segmentation by developing a combined approach

of neural networks and clustering to simultaneously determine leaf

and plant instances. However, to the best of our knowledge, the

approach is not used for plants as large and highly overlapping as in

our provided later developmental stages (see Figure 16c,d).

Another way to improve the result of instance segmentation is to

vary the field of view per image. In further experiments, we observe

that when applying a modified field of view, plants are segmented

with only a few errors. For these experiments, we reduce the

threshold by up to 20% depending on the extension of the field of

view. The masks and bounding boxes of the predictions match the

plants. However, the size of the objects differs from the training data

due to the change in scale. This causes the model to have less

confidence in its predictions, even if they are correct. Even with a

changed image size, cauliflower plants can be easily distinguished

from weeds and each other. As it brings greater variability to the data,

adding images with a larger field of view to the training set could lead

F IGURE 16 Plant and leaf instance segmentation results. The different colors indicate the different instances. In the visualization of the
leaf instance segmentation results, we concentrate on the visualization of the masks for clarity and omit the bounding boxes. The examples
shown in (a) and (c) show accurate results and those in (b) and (d) show improvable results. (a) Accurate plant instance segmentation results,
(b) improvable plant instance segmentation results, (c) accurate leaf instance segmentation results, and (d) improvable leaf instance
segmentation results.
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to further improvements in the results. However, this would require

labeling more data.

We recommend our dataset for further methodological develop-

ments or as evaluation dataset for existing approaches as used in the

work of Günder et al. (2022).

7 | CONCLUSION AND FUTURE
DIRECTIONS

In this article, we have introduced the GrowliFlower dataset,

which is a georeferenced, image‐based UAV time‐series dataset of

two monitored cauliflower fields during their entire growth

period. The proposed dataset was described, and we discussed

the data collection process, which may helpful for other similar

data collection procedures. The proposed dataset comprises

weekly RGB and multispectral UAV orthophotos and image

time‐series of individual plants reflecting weekly plant growth.

In subset of the proposed dataset, in‐situ reference measure-

ments, for example, plant size, are also available, and another

subset provides pre‐ and post‐defoliation images to demonstrate

the relationship the interior and exterior of the cauliflower plant.

The proposed dataset also contains annotations with segmented

plant and leaf instances, as well as annotations on stems. The data

are available at http://rs.ipb.uni-bonn.de/data/. The proposed

dataset is intended to promote the use and evaluation of ML

methods and foster close collaboration between different disci-

plines, for example, agricultural sciences, remote sensing, and ML.

We have also presented baseline results of two applications of the

proposed dataset using the Mask R‐CNN model, that is, plant

instance segmentation and leaf instance segmentation tasks. In

addition, we expect that the findings and descriptions presented

in this paper will help realize effective data collection processes

that are transferred to other areas.
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APPENDIX A: APPENDICES

See Figure A1

See Figure A2

See Table A1

See Figure A3

See Figure A4

See Figure A5

F IGURE A1 Location of ground control points in fields 1 and 2.

F IGURE A2 Visual overview of (a) reference plots for in‐situ measurements in field 1 and (b) the respective design of reference plot 4
(including reference plants and ordering of reference plant numbers). The plot design is valid for all reference plots in field 1.
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TABLE A1 Monitored abiotic and
biotic stresses.

Abbreviation Meaning Abbreviation Meaning

P Plant L Leaf/leaves

nP No plant wL Without leaves

Pl Plant lying down oL Old leaves

wP Whole plant yL Yellowish leaves

2P Two plants rL Reddish leaves

bb Blind bud pgL Pale green leaves

pd Planted too deep pygL Pale yellowish green leaves

A Aphids present sg Stunted growth with many

shoots

C Coal fleas present dT Damage to leaves caused
by tractor

F Flies present

F IGURE A3 Separation of plants fields 1 and 2 in GrowliFlowerT in training (blue), validation (yellow), and testing (red) sets. For field 1,
the two planting days are separated using dark colors for July 28, 2020 and light colors for July 29, 2020.
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F IGURE A4 Separation of reference plants in fields 1 and 2 in GrowliFlowerR in training (blue), validation (yellow), and testing (red) sets.

F IGURE A5 Separation of defoliated plants in fields 1 and 2 in GrowliFlowerD in training (blue), validation (yellow), and testing (red) sets.
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