
SOFTWARE AND DATA SETS

103 MARCH 2023    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE

BURAK EKIM   , TIMO T. STOMBERG   ,  
RIBANA ROSCHER   , AND MICHAEL SCHMITT  

The advancement in deep learning (DL) techniques 
has led to a notable increase in the number and size of 

annotated datasets in a variety of domains, with remote 
sensing (RS) being no exception [1]. Also, an increase in 
Earth observation (EO) missions and the easy access to 
globally available and free geodata have opened up new 
research opportunities. Although numerous RS datasets 
have been published in the past years [2], [3], [4], [5], [6], 
most of them addressed tasks concerning man-made en-
vironments, such as building footprint extraction and 
road network classification, leaving the environmental 
and ecology-related subareas of RS underrepresented. 
Nevertheless, environmental protection has always been 
an important topic in the RS community, with RS being 
a useful tool to support conservation policies and strate-
gies combating challenges such as deforestation and loss 
of biodiversity [7], [8], [9]. Thus, in this article, to meet 
the pressing need to better understand the nature we are 
living in, we introduce a novel task of wilderness map-
ping and advertise the MapInWild dataset [10]—a mul-
timodal large-scale benchmark dataset designed for the 
task of wilderness mapping from space.

INTRODUCTION
Automated classification of image data has a long tra-
dition in EO. In this community, the classification task 
can be addressed in different ways, most notably as a 
scene- or patch-wise classification in contrast to pixel-
wise classification. In scene classification, full scenes are 
assigned by the classifier with single or multiple class la-
bels, whereas in pixel-wise classification (usually called 
semantic segmentation by the computer vision com-
munity), the task outputs densely annotated prediction 
maps on a pixel scale by separating the input into dis-
tinct and semantically coherent segments.

In general, image classification approaches either 
are based on hand-crafted feature engineering and 
subsequent machine learning (ML) models or feature 
learning incorporated into the ML model in the form of 
deep neural networks. In the RS area, the long-standing 
tasks of scene classification and semantic segmenta-
tion have been approached in a variety of settings [11], 
ranging from metric learning [12] to multitask learning 
[13]. While some methods frame the RS-related tasks 
within the context of perturbation-seeking generative 
adversarial networks [14], some others have made use of 
uncertainty estimation applied to deep ensembles [15] 
and self-attention context networks under adversarial 
attacks [16].

The success of DL models comes at the expense of 
decreased interpretability, which means the ability to 
understand the decision process of the model and the 
reason why a specific outcome was derived. This is 
mainly caused by their formation of hundreds of suc-
cessive layers, leading to a high number of parameters. 
In recent years, several studies addressed the lack of 
explainability and interpretability of DL models and 
proposed methods to overcome this challenge. Model-
agnostic approaches are independent of the used model 
and can be applied post hoc. Popular approaches are, 
for example, occlusion sensitivity maps [17], which 
observe the change in the output while systematically 
occluding small parts of the input; local interpretable 
model-agnostic explanations [19], which approximate 
the model with smaller models with fewer parameters; 
and gradient-weighted class activation maps [18], which 
combine the activation maps in a convolutional neural 
network with class-specific gradients. Besides model-
agnostic approaches, model-specific approaches are tai-
lored to specific models. They mainly use parts of the 
model, such as the weights, to analyze the decision pro-
cess or to interpret the model outcome. One example 
is activation space occlusion sensitivity (ASOS), which 
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analyzes the activation maps and utilizes the concept of oc-
clusion sensitivity in the activation space.

The task of wilderness mapping is interesting in a twofold 
way: First of all, wilderness areas are an essential element 
of the natural environment and provide native habitat for 
many species, which are often endangered. Thus, the very 
task itself is important in the context of conservation and 
environmental protection. Second, though, the term wilder-
ness is of a philosophical nature and is comparably ill de-
fined from a mathematical/technical standpoint [20], [21].

Explainable ML methods 
can be used to address the 
task of wilderness mapping. 
The objective of these meth-
ods is to uncover patterns in 
the decision-making process 
of the mapping task with the 
goal of improving the under-
standing of what makes na-
ture wild. Explainable ML ap-
proaches, which are used for 
the discovery of new scientific 

knowledge, such as the exploration of wildlife characteris-
tics, combine interpretation tools that present complex pro-
cesses as in neural networks in a human-understandable 
space with domain knowledge to derive explanations [22].

Taking the ML perspective further, we claim that train-
ing models for wilderness mapping are not only an ideal 
testbed for methodical developments in explainable ML 
but also in other subfields, such as weakly supervised 
learning. Thus, the dataset will not only cater to the envi-
ronmental RS community but also address technical audi-
ences beyond that.

WILDERNESS MAPPING
Anthropogenic pressure (i.e., human influence) on the en-
vironment is the largest single cause of loss of biological 
diversity [23], and the conservation of ecological dynamics 
and biodiversity is now more important than ever before. 
With the ever-increasing prominence of the need for envi-
ronmental conservation, the world is in desperate need of 
environmental monitoring and quantifying of the degree 
of human influence on the environment.

While there is a lot of work being done in fields such as 
unsupervised, semisupervised, and weakly supervised ML, 
most of the established methods still rely on the supervised 
learning paradigm, rendering the need for carefully anno-
tated training data. In the context of environmental RS, this 
can be achieved for rather well-defined target classes, such 
as “water” or “forests,” but it becomes a significant chal-
lenge if a less technical interpretation of the environment 
is the desired goal. As an example, many researchers in the 
past have presented rule-based approaches to study con-
cepts such as naturalness [24], [25], human influence [26], 
or wilderness [27]. All of these approaches are carefully de-
signed by domain experts and cannot be validated against 

actual, biophysically measurable ground truth. The term 
“wilderness” is philosophical rather than technical in na-
ture and subject to many different definitions [20], with the 
definition of the European Commission being [29], p. 10]:

A wilderness is an area governed by natural processes. It is 
composed of native habitats and species, and large enough for 
the effective ecological functioning of natural processes. It is 
unmodified or only slightly modified and without intrusive or 
extractive human activity, settlements, infrastructure or visual 
disturbance.

This definition assigns four central ecological aspects 
to the concept of wilderness: 1) naturalness, 2) undistur-
bedness, 3) undevelopedness, and 4) scale. While scale can 
easily be defined in a mathematical sense, e.g., by defin-
ing so-called minimum mapping units, naturalness refers 
to ecosystems functioning in a natural way and can thus 
hardly be measured in a technical sense, but is subject to 
judgment by ecology experts based on in situ observa-
tions. Undisturbedness and undevelopedness, however, 
are concepts that can potentially be observed with the use 
of RS technologies. As per the European Commission, un-
developedness refers to the absence of “habitation, settle-
ments or other human artefacts such as power lines, roads, 
railways, fences [that] may hinder ecological processes di-
rectly or by promoting the likelihood of human interfer-
ence” [29], p. 12].

While the task of wilderness mapping could be con-
sidered as a special case of land cover mapping, there is a 
subtle difference to be noted that appear from the ill-posed 
definition of the term wilderness. Since there are nomencla-
tures with precise class definitions to follow for conven-
tional land cover mapping, it is relatively easier to decide 
what class to assign to the instance of interest, especially 
in the presence of domain knowledge. However, given the 
vague definition of the term, we argue that wilderness is 
not an instance to map, but a concept to discover.

It is undeniable that wilderness areas pose an utmost sig-
nificance given their role in harboring species and habitats, 
which are indisputable elements of the environment. This 
feature of the term wilderness gives a rise to incorporating 
explainable ML methods with the purpose of interpreting 
the decisions made by the DL.

Wilderness has no biophysical basis and thus cannot 
be easily delineated or categorized. Instead, wilderness is 
a cultural concept [30], and the associated definition of 
wilderness changes over time. Moreover, changing policy 
and management strategies make the identification and 
protection of wilderness compelling. There exists a di-
verse set of explanations of the word “wilderness,” most 
of which are engaged with describing it in a philosophical 
way, which might seem vague from a technical point of 
view. Besides, understanding wilderness—a key element 
of nature—poses great importance since the protection 
of nature can be fostered by better defining its ill-defined 
elements. Consequently, we adopt a bottom-up approach 
and address the ambiguity in nature’s vital elements (e.g., 
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wilderness) to better protect the environment we live in. 
Ultimately, we raise the rhetorical question “What makes 
nature wild?” and invite the community to participate 
in finding possible solutions to the open challenges we 
have mentioned to get closer to discovering the concept 
of wilderness.

THE MAPINWILD DATASET

CURATION
The cloud storage and computing facilities of Google Earth 
Engine (GEE) [32] are utilized during the dataset curation 
phase by keeping the reproducibility aspect in mind (i.e., 
defining fixed seed values to random number generators 
and using definitive time frames for image queries). Given 
the complexity of the task being addressed, MapInWild 
consists of distinct sets of geosensors that aim to leverage 
complementary information about the natural environ-
ment: Sentinel-1, Sentinel-2, European Space Agency (ESA) 
WorldCover, the Visible Infrared Imaging Radiometer Suite 
(VIIRS), and World Database on Protected Areas (WDPA) 
polygons; a sample from MapInWild is shown in Figure 1. 
WDPA polygons comprise feature classes designating pro-
tected areas and formed by the United Nations Environ-
ment Programme’s World Conservation Monitoring Center 
and the International Union for Conservation of Nature 

(IUCN) World Commission on Protected Areas [28]. The 
complete list of WDPA classes is given in Table 1. From the 
anthropogenic pressure point of view, in which the varia-
tions in the diversity are explained along human influence 
gradients, we reformulate these discrete sets of areas on a 
continuous spectrum, where 
the distinction among areas 
is relatively ill defined. On 
the grounds of the observa-
tion that human presence 
increases going from category 
Ia to category II, we raise the 
question: At what point of the 
human presence continuum 
should an area be considered 
a wilderness area? Supported 
by this theoretical research 
question, we argue that cat-
egory Ia and category II could be beneficial proxies in inter-
preting and explaining the concept of wilderness. Ultimate-
ly, we form the MapInWild dataset with the following three 
WDPA classes: strict nature reserve (category Ia), wilderness 
area (category Ib), and national park (category II).

As for the Sentinel-1 image, a ground-range-detected 
product with a resolution of 10 m is used. Sentinel-1 images 
contain VH and VV polarizations and use the interferometric 

Wilderness Proxy
Background

Tree Cover Cropland Bare/Sparse Vegetation
Snow and Ice

Permanent Water Bodies
Herbaceous Wetland

Mangroves
Moss and LichenBuilt UpShrubland

Grassland

FIGURE 1. A wilderness sample from the MapInWild dataset (Juniper Dunes, United States, WDPA ID: 555556115). The first row shows the 
Sentinel-2 images of four seasons, from left to right: spring, summer, autumn, and winter. Second row, same order: Sentinel-1 image, ESA 
WorldCover map, VIIRS Nighttime Day/Night band, and WDPA annotation. For visualization purposes, the VV and VH bands of the Senti-
nel-1 image are treated as red and green bands, and only visible bands (red: B4, green: B3, and blue: B2) in the Sentinel-2 image are used. 
The ESA WorldCover map legend is given at the bottom the figure.
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wide swath mode. The Level-2A Sentinel-2 image contains 
10 spectral bands (B2, B3, B4, B5, B6, B7, B8, B8A, B11, 
and B12) and is subject to mosaicking to mitigate the effect 

caused by clouds. We stack the 
imagery of any area of interest 
(AOI) for a defined period of 
time in the year 2020, and for 
each band in each pixel, we se-
lect the value defining the 25% 
percentile regarding reflectivi-
ties observed in that time pe-
riod. We empirically found 
that this way of compositing 
results in a more informative 
image than median composit-
ing. To further widen the scope 

of the dataset, we provide four seasons of Sentinel-2 images 
for every AOI. By adding a multitemporal value to the da-
taset by including all seasons for every AOI, we aim to fur-
ther facilitate the investigation of wilderness mapping in a 
time-series manner. Further, rather than defining a single 
season period when querying the seasons, we take hemi-
spheres of the AOI into account and define the season pe-
riods accordingly (i.e., Northern Hemisphere and South-
ern Hemisphere). We use the remaining sources (ESA 
WorldCover and the VIIRS) in their original forms and leave 
the end users with more flexibility. We performed reprojec-
tion and scaling to have the corresponding pixels across 
geodata sources in the same scale and projection, which 
uses the rubber-sheet algorithm as a registration method. 
The curation strategy is illustrated in Figure 2.

SAMPLING STRATEGY AND EXPORTING
Considering the difficulty of adequately sampling Earth’s 
surface in terms of representability, we develop a guided 

sampling approach taking the hard constraints of the WDPA 
polygons into account. Prior to filtering the images, sampling 
of the WDPA polygons takes place. Merely using the original 
WDPA polygons is not ideal because of the uneven distribu-
tion across continents and disparity in polygons (in terms of 
both volume and size). To this end, to ensure the versatility 
of the dataset and the spatial coverage of its samples, we 
design a climate map and land cover type-aware semiau-
tomated sampling approach, where a subsampling of the 
polygons is performed while improving the spatial cov-
erage of the WDPA polygons. The developed approach is 
illustrated in Figure 3. We start the process by applying a 
class-wise minimum area threshold (using the asset fea-
ture GIS_AREA) of 5 km2 to category Ia and category Ib 
and 100 km2 to category II. Then, after filtering out the 
nonterritorial areas, the sampling operation takes place, 
where we use a GEE function (namely, StratifiedSample()) 
that allows users to supervise the sampling process with 
weights that can be obtained from auxiliary data. For 
our case, we use the Köppen–Geiger climate classifica-
tion map and the ESA WorldCover map as a proxy to 
maintain guidance over the sampling process. The sam-
pling weights used in the StratifiedSample() function are 
formed by calculating the class-wise correlation between 
the WorldCover and climate classification maps (i.e., the 
frequency of each land cover class in each climate clas-
sification map). Consequently, the calculated weights 
are inversely normalized, and row-wise summations are 
used as sampling weights. Hence, oversampling of un-
derrepresented polygons (and vice versa) is performed 
by following the observation that the representability of 
protected areas could be promoted by taking land cover 
and climate zones into account. Further, the polygons 
within a certain proximity (30 km2 for category Ia and 
category Ib and 50 km2 for category II) are removed. Ul-
timately, the resulting samples are exported for further 
analysis after fitting a bounding box with a size of 20 km 
× 20 km to the center of each polygon.

After exporting, the images are renamed after the WDPA 
polygon they contain and cropped into 1,920 × 1,920 pixel 
patches to remove the reprojection effect occurring near 
borders. We further add 108 AOIs from populous areas that 
exhibit human disturbance on Earth in various forms to 
strengthen the versatility of the dataset. The final distribu-
tion of the AOIs sampled from the WDPA polygons is given 
in Figure 4. The motivation behind this manual interven-
tion, which increased the number of AOIs in the dataset 
from 910 to the final number of 1,018, is due to the po-
tentiality that the model might overfit the wilderness ar-
eas in the form of forested areas (see the ESA WorldCover 
class distribution in Figure 5). A naming convention of 
9000000XXX (where X is the identification number of the 
patch) is adopted when including the manually selected 
AOIs in the dataset. Overall, our dataset has 8,144 images 
(1,018 × 8, where 1,018 is the number of AOIs in the dataset 
and 8 is the number of the data sources each AOI contains) 

TABLE 1. IUCN PROTECTED AREA CATEGORIES.

WDPA CLASS DESCRIPTION 

Ia: Strict nature reserve 
Strictly protected areas where human 
presence is strictly limited and controlled 

Ib: Wilderness area 

Slightly modified areas with little human 
presence in the form of indigenous and 
local communities 

II: National park 
Functioning ecosystems subject to tour-
ism through zoning 

III: Natural monument  
or feature 

Areas where preserving a particular 
feature hosting a cultural value is the 
dominant goal 

IV: Habitat/species  
management area 

Areas where flora species, fauna species, 
or habitats are aimed to be preserved 
and/or restored through informed  
interventions 

V: Protected landscape/
seascape 

Areas where a distinct value is created by 
human presence over time 

VI: Protected area with 
sustainable use of natural 
resources 

Areas where the conservation of natural 
ecosystems and ecological processes 
take place 
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with a shape of 1,920 × 1,920 pixels. A sample image from 
the dataset is given in Figure 1.

QUALITY ASSESSMENT AND STATISTICS
With the intention of further improving the usability of 
the dataset, we conduct a quality assessment of the Sen-
tinel-2 seasons. First, an evaluation platform is prepared 
and shared with many RS experts. The participants are 
then asked to annotate the informativeness of each Senti-
nel-2 season. Next, by performing a statistical analysis that 
takes the percentage of the votes, we 1) discard the patches 
with a discard score of higher than 50%, 2) assign a qual-
ity score between 0 and 10 to each season, and 3) calculate 

the single temporal subset of each season using the quality 
scores calculated in the previous step. In cases where several 
seasons are assigned with the same quality score, we favor 
the season summer over the other seasons. In addition to 
the single temporal subsets, we also make the quality scores 
publicly available, which can be used to form case-specific 
single temporal subsets.

With this quality assessment, we not only refine the da-
taset and remove noninformative patches, but also boost 
the versatility of the dataset by generating quality scores 
and single temporal subset seasons assigned to each season 
and patch, respectively. We advise the researchers to make 
use of the single temporal subset seasons defined for each 
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FIGURE 2. Curation workflow: querying and filtering the geodata sources in the MapInWild dataset. L2A: Level-2A;  
GRD: ground range distance.
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patch should they be solely interested in the single tempo-
ral information.

The final distribution of the AOIs sampled from the 
WDPA polygons is given in Figure 4. Figure 5 shows the 
percentage of ESA WorldCover classes falling in the AOIs.

BASELINE EXPERIMENTS
In the following experiments, we aim to discover the concept 
of wilderness in two different ways: by semantic segmenta-
tion and scene classification with a focus on sensitivity anal-
ysis. Both experiments work toward providing initial efforts 
in understanding wilderness. For both experiments, out 

of 1,018 patches, we used 80%, 10%, and 10% of them for 
training, validation, and test sets, respectively. The patch IDs 
of the sets are made publicly available, and the distribution 
of the sets is shown in Figure 4. For the semantic segmenta-
tion experiment, we unify the three protected area classes 
in the annotation sources to form binary wilderness masks.

SEMANTIC SEGMENTATION

EXPERIMENTAL SETUP
For this experiment, we adopt the U-Net architecture [33] 
with ResNeSt 14d [34]. The model consists of approximately  
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are filtered through a semiautomated sampled process that is guided by the climate zones and the land cover types.
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8 million parameters. As an optimization algorithm, we 
use Adam with beta values of (0.9, 0.999) and an epsilon 
value of 10−8. We select the learning rate as 0.0001 and 
adopt the cosine annealing learning rate schedule with the 
maximum number of iterations set to 10. We use the dice 
loss to quantify the cost value and set the batch size as 32. 
During the training process (e.g., on the fly), we random-
ly extract patches with a shape of 512 × 512 pixels from 
the input images and feed them to the model. We use the 
three-band (B4, B3, and B2) Sentinel-2 image queried with 
the single temporal subset seasons and utilize ImageNet 
pretrained weights during the feature extraction phase. 
Furthermore, we configure mixed-precision training to 
shorten the training and inference time and decrease the 
required amount of memory. We train the model on an 
Nvidia Tesla V100 SCM3 32GB. The training process is ter-
minated with an early stopping callback with a patience 
(the number of epochs without improvement in the metric 
observed) of 8. The achieved overall pixel-wise classifica-
tion accuracy, intersection over union (IoU) score, and F1 
score are shown in Table 2. The quantitative results are 
shown in Figure 6.

SCENE CLASSIFICATION AND  
SENSITIVITY ANALYSIS
In this experiment, we perform scene classification with 
a subsequent sensitivity analysis. To this end, we use the 
single temporal subset of the Sentinel-2 data and extract 
tiles with a height and width of 256 pixels each. The tiles 
are extracted in such a way that they are located exclusively 
either within or without the WDPA regions without over-
lapping. Thus, we get 24,101 tiles within WDPA regions 

(label 1) and 17,795 tiles outside of WDPA regions (label 0). 
The proportions of the training, validation, and test set re-
main approximately the same.

Training

Validation

Test

FIGURE 4. Distribution of the AOIs and training, validation, and test sets across continents. The points represent the center of each study 
area and are enlarged for better visualization.
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FIGURE 5. The pixel-level breakdown of final AOIs in terms of land 
cover. The land cover information is obtained from the ESA World-
Cover map existing in the dataset.

TABLE 2. QUALITATIVE RESULTS (%): BASELINE MODEL FOR 
THE SEMANTIC SEGMENTATION TASK.

MODEL BACKBONE IOU ACCURACY F1

U-Net ResNeSt 14d 69.1 76.31 81.73
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We perform ASOS according to [21] to create high-
resolution sensitivity maps of our test samples to assess 
whether specific regions are sensitive toward wilderness 
or nonwilderness. The authors provide neural network 
architecture, a specific training procedure, and the ap-
proach for sensitivity analysis. We proceed in the same 
way and refer to their work for a detailed description of 
the methodology.

The neural network consists of a modified form 
of the U-Net of [33] and a simple classifier network, 
shown in Figure 7. The activation map at the interface 
of these two networks has three channels and is the 
same size as the input image. The model has about  
2 million parameters.

CLASSIFICATION
We run the same training procedure as in [21] and use a 
maximum learning rate of 0.01, a weight decay of 0.0001, 
and a batch size of 32. We train the model for 50 epochs on 
an Nvidia Quadro RTX 4000 (8 GB GDDR6) for about 6 h.

The achieved overall classification accuracies are 92% 
for the training set, 82% for the validation set, and 74% for 
the test set. The confusion matrix of the test set is shown 
in Table 3.

SENSITIVITY ANALYSIS
After the model has been trained, we run the ASOS analysis 
on all correctly classified training samples. For this, specific 
pixels are occluded in the activation maps by setting them 

to zero. This changes the classifica-
tion scores, and the deviations are a 
measure of the sensitivities of the oc-
cluded parts. The occlusions are de-
termined from the activation space 
in which each of the three axes cor-
responds to one of the three channels 
of the activation maps. Pixels that are 
close to each other in the activation 
space are occluded simultaneously. 
The resulting sensitivities are visual-
ized in Figure 8. Low-density areas 
are not included in this mapping. 
Knowing the sensitivities, we can 
predict sensitivity maps for any input 
image. A selection of the test samples 
is shown in Figure 9.

DISCUSSION
With the semantic segmentation experi-
ment, we study the concept of wilder-
ness on a pixel scale. The model used 
in this experiment outputs densely pre-
dicted segmentation maps for a given 
test image with a shape of 1,920 × 1,920, 
as shown in Figure 6. The first sample 
shows parts of the Rio Novo National 
Park, where the park is seen as di-
vided in two by a river. We see that 
the model predicts the whole patch 
(except for the deforestation areas) as 
wilderness, while the WDPA proxy 
contains annotation only on the right 
side of the river. The second sample 
shows the Phu Pha Man District in 
Thailand. Here, the proxy loosely 
aligns with the models’ output. The 
output segmentation map here filters 
out the areas with a human influence 
(i.e., a suburban area surrounded by 
cultivated lands). The third sample 
is located at Santa Bárbara Ecological  

Wilderness Proxy Wilderness Area Background

FIGURE 6. Baseline results for the test images with the IDs 351819, 39516, 19442, and 
900000068. Row-wise, from left to right: input image, wilderness proxy, and model’s output. 
Input images are the single temporal subsets of the Sentinel-2 images for the corresponding IDs.
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Station in Brazil. Here, the segmentation map does not in-
clude any annotation. This could be explained by the ob-
servation that this area exhibits human influence in the 
form of roads and arable lands, which clearly does not 
comply with the “undisturbedness” and “undeveloped-
ness” states of the wilderness areas. The last sample shows 
Cape Coral, Florida. This is one of the samples we have 
manually added to the dataset (notice the 9 at the begin-
ning of the ID). This sample shows that the model does 
not annotate an urban area as wilderness, although there 
are golf courses, inner city parks, football courts, and for-
est areas on the perimeter. This sample also set forth the 
ability of the model to capture the “disturbedness” and 
“developedness” of an area. All things considered, this 
experiment exhibits that the model is competent to dis-
cover wilderness areas on a pixel scale. While doing so, 
the model provides a more viable annotation of wilder-
ness areas as an output. With this observation, we go a 
step further and analyze the models’ output with the use 
of explainable ML techniques to take a deeper look at the 
models’ decisions.

TABLE 3. THE CONFUSION MATRIX OF THE TEST DATA-
SET FOR THE CLASSIFICATION TASK. PERCENTAGES ARE 
GIVEN IN BRACKETS.
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FIGURE 8. The activation space of the sensitivity analysis. Each axis 
corresponds to the values of the respective channel in the activa-
tion maps. The greener the vectors, the more they are sensitive to 
wilderness characteristics; the more violet, the more sensitive to 
nonwilderness characteristics. Low-density areas are not included 
in the sensitivity mapping, and the corresponding vectors are not 
shown here.
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Applying ASOS to the MapInWild dataset, we dem-
onstrate an example task for explainable ML. Training 
a neural network on classification, we can predict the 
high-resolution sensitivity maps shown in Figure 9. The 
first sample shows parts of the Australian national park 
Karijini. It is centrally split by a mine and a railway. The 
human influence on the surroundings appears to be so 
small that the model does not highlight them as such. 
The second sample is located at the Sid’s Mountain Wil-
derness Study Area in Utah, United States. The model de-
tects some parts that are mainly outside the study area as 
nonwild. The inner parts of the study area seem to have 
wild characteristics. The third sample shows the Skadar 
Lake National Park in Montenegro and Albania. At the 

top, agricultural fields reach inside the national park; 
this is detected by the model. The lake itself has mainly 
not been predicted because of high uncertainty. This 
goes with the MapInWild dataset, which has been cre-
ated by specifically looking for nonwater polygons. The 
fourth sample shows the small Skwaha Lake Ecological 
Reserve in Canada. This reserve has, according to the 
model, mixed characteristics. The two regions detect-
ed as nonwild are valleys. The left one includes sev-
eral streets, and the right region includes Trans-Canada 
Highway 1 along a river.

We provide the preceding experiments as an initial ef-
fort in addressing the novel task of wilderness mapping 
on the large-scale benchmark dataset MapInWild. The 

task has first been investigated on 
a pixel scale within the frame of 
semantic segmentation, where the 
imperfect wilderness annotations 
have been used as a proxy when 
mapping the wilderness areas. On 
the one hand, there are cases where 
the learner extrapolates the wilder-
ness area to the entire scene as the 
wilderness area in the annotation 
is of similar appearance to the re-
maining area, which is annotated 
as nonwilderness (the first sample 
in Figure 6). This behavior of the 
learner exhibits its ability to learn 
the concept of wilderness from im-
perfect annotations. On the other 
hand, it is seen that, when mapping 
the wilderness areas, the learner 
dampens the presence of wilderness 
characteristics shown in the proxy. 
Although there is an annotated wil-
derness characteristic in the center 
of the area (the third sample in Fig-
ure 6), the existing human influ-
ence in the surroundings might be 
negatively affecting the essence and 
form of the wilderness concept real-
ized and discovered by the learner. 
The concept realized might contain 
a learned pattern on 1) the size of 
a wilderness area, 2) the distance 
to the nearest area under human 
influence, and 3) characteristics of 
the site in terms of land use and 
land cover. Similar to this behavior, 
the learner shows strength in leav-
ing out the resemblance of inner 
city parks and forests with a wilder-
ness area in the form of a forested 
area (the last sample of Figure 6). In 
the middle of the learner’s behavior  

Wilderness Proxy Background

FIGURE 9. Baseline results for the test images with IDs 64113, 374681, 16385, and 18415. Row-
wise, from left to right: input image, wilderness proxy, and sensitivity map. The color scale of 
the sensitivity maps is given in Figure 8. Areas with a low density in the activation space are 
not mapped to sensitivities and are colored gray in the sensitivity maps.
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scale, there lies a typical representation of a semantic 
segmentation task in which the learner approximates 
the given annotation (the second sample in Figure 6). 
While doing so, the learner struggles with the borders 
of the given wilderness area, which can be explained by 
1) the edge-effect [31], which complicates the segrega-
tion of ecological units from the previous perspective, 
and 2) the imperfect annotations used when training 
the learner.

Later, the learner has been further investigated by em-
ploying an interpretable-by-design architecture to study 
the patterns in the decision-making process. The high-res-
olution sensitivity maps in Figure 9 make it evident that 
the learner holds a deeper understanding of wilderness 
that disentangles wilderness from human influence. The 
maps produced in this experiment provide pixel-level sen-
sitivity information that could be utilized in the process of 
inferring new scientific insights.

Although the behavior of the learner can often be ex-
plained away with some confidence, in the light of the 
experimental results explained previously, it is still un-
clear when and why the learner behaves in certain ways. 
Motivated by this observation, we urge environmental 
science, conservation, computer science, and RS research-
ers to study the ambiguity in the ill-defined elements of 
nature to better monitor, understand, and protect nature, 
our home.

SUMMARY AND CONCLUSION
With this article, we 1) introduce a novel task of wilderness 
mapping and 2) publish MapInWild, a large-scale bench-
mark dataset curated for the task of wilderness mapping. 
MapInWild is a multimodal dataset and comprises vari-
ous geodata acquired and formed from a diverse set of RS 
sensors. The dataset consists of 8,144 images with a shape 
of 1,920 × 1,920 pixels and is approximately 350 GB in 
size. The images are weakly annotated with three classes 
derived from the WDPA: strict nature reserves, wilder-
ness areas, and national parks. With MapInWild, for the 
purpose of deepening our understanding of what makes 
nature wild, we embark on the complications induced by 
the ambiguity of the term wilderness and study the vague-
ness in nature and propose our dataset as a test bed for 
ML research concerning environmental RS. We are con-
vinced that getting closer to understanding the concept 
of wilderness is of great value to the community to fur-
ther bridge the gap between DL applied to environmental 
RS and conservation. Both the MapInWild dataset and 
the code are publicly available at https://dataverse.harvard.
edu/dataverse/mapinwild and https://github.com/burakekim/
MapInWild.
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